Determining metabolic mechanism linking phospholipids and docosahexaenoic acid through phosphatidylcholine synthesis by phosphocholine cytidylyltransferase (CCT) overexpression in Schizochytrium sp.
IF 4.3 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Determining metabolic mechanism linking phospholipids and docosahexaenoic acid through phosphatidylcholine synthesis by phosphocholine cytidylyltransferase (CCT) overexpression in Schizochytrium sp.","authors":"Xiaowen Cui, Tingting Chen, Yizhen Meng, Xueshan Pan, Ruizhe Wu, Yinghua Lu, Chuanyi Yao, Xihuang Lin, Xueping Ling","doi":"10.1186/s12934-025-02703-2","DOIUrl":null,"url":null,"abstract":"<p><p>The polyunsaturated fatty acid (PUFA) metabolism of Schizochytrium, an excellent oil-producing microorganism, is closely related to phosphatidylcholine (PC) synthesis, which favors the migration and accumulation of docosahexaenoic acid (DHA). Phosphocholine cytidylyltransferase (CCT), a key enzyme involved in PC synthesis, profoundly impacts lipid metabolism in plants; however, few studies have focused on CCT in microorganisms. We investigated the effects of CCT overexpression on lipid metabolism in Schizochytrium sp. CCT overexpression slightly inhibited cell growth, but significantly promoted total lipid synthesis. Compared to the wild-type strain, PUFA content and DHA production in the CCT-overexpressing strain (SR21-CCT) increased by about 49% and 46%, respectively. Analysis of phospholipids and quantitative real-time PCR revealed that CCT overexpression enhanced phospholipid synthesis, especially by strengthening glycerophosphorylcholine acylation and de novo PC synthesis pathways, which promote DHA esterification to PC and DHA accumulation in triacylglycerols. This study helps decipher the mechanism correlating phospholipid metabolism and DHA production.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"81"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02703-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The polyunsaturated fatty acid (PUFA) metabolism of Schizochytrium, an excellent oil-producing microorganism, is closely related to phosphatidylcholine (PC) synthesis, which favors the migration and accumulation of docosahexaenoic acid (DHA). Phosphocholine cytidylyltransferase (CCT), a key enzyme involved in PC synthesis, profoundly impacts lipid metabolism in plants; however, few studies have focused on CCT in microorganisms. We investigated the effects of CCT overexpression on lipid metabolism in Schizochytrium sp. CCT overexpression slightly inhibited cell growth, but significantly promoted total lipid synthesis. Compared to the wild-type strain, PUFA content and DHA production in the CCT-overexpressing strain (SR21-CCT) increased by about 49% and 46%, respectively. Analysis of phospholipids and quantitative real-time PCR revealed that CCT overexpression enhanced phospholipid synthesis, especially by strengthening glycerophosphorylcholine acylation and de novo PC synthesis pathways, which promote DHA esterification to PC and DHA accumulation in triacylglycerols. This study helps decipher the mechanism correlating phospholipid metabolism and DHA production.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems