Enabling disaggregation of Asian American subgroups: a dataset of Wikidata names for disparity estimation.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qiwei Lin, Derek Ouyang, Cameron Guage, Isabel O Gallegos, Jacob Goldin, Daniel E Ho
{"title":"Enabling disaggregation of Asian American subgroups: a dataset of Wikidata names for disparity estimation.","authors":"Qiwei Lin, Derek Ouyang, Cameron Guage, Isabel O Gallegos, Jacob Goldin, Daniel E Ho","doi":"10.1038/s41597-025-04753-y","DOIUrl":null,"url":null,"abstract":"<p><p>Decades of research and advocacy have underscored the imperative of surfacing - as the first step towards mitigating - racial disparities, including among subgroups historically bundled into aggregated categories. Recent U.S. federal regulations have required increasingly disaggregated race reporting, but major implementation barriers mean that, in practice, reported race data continues to remain inadequate. While imputation methods have enabled disparity assessments in many research and policy settings lacking reported race, the leading name algorithms cannot recover disaggregated categories, given the same lack of disaggregated data from administrative sources to inform algorithm design. Leveraging a Wikidata sample of over 300,000 individuals from six Asian countries, we extract frequencies of 25,876 first names and 18,703 surnames which can be used as proxies for U.S. name-race distributions among six major Asian subgroups: Asian Indian, Chinese, Filipino, Japanese, Korean, and Vietnamese. We show that these data, when combined with public geography-race distributions to predict subgroup membership, outperform existing deterministic name lists in key prediction settings, and enable critical Asian disparity assessments.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"580"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04753-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Decades of research and advocacy have underscored the imperative of surfacing - as the first step towards mitigating - racial disparities, including among subgroups historically bundled into aggregated categories. Recent U.S. federal regulations have required increasingly disaggregated race reporting, but major implementation barriers mean that, in practice, reported race data continues to remain inadequate. While imputation methods have enabled disparity assessments in many research and policy settings lacking reported race, the leading name algorithms cannot recover disaggregated categories, given the same lack of disaggregated data from administrative sources to inform algorithm design. Leveraging a Wikidata sample of over 300,000 individuals from six Asian countries, we extract frequencies of 25,876 first names and 18,703 surnames which can be used as proxies for U.S. name-race distributions among six major Asian subgroups: Asian Indian, Chinese, Filipino, Japanese, Korean, and Vietnamese. We show that these data, when combined with public geography-race distributions to predict subgroup membership, outperform existing deterministic name lists in key prediction settings, and enable critical Asian disparity assessments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信