{"title":"Encapsulation of select violacein pathway enzymes in the 1,2-propanediol utilization bacterial microcompartment to divert pathway flux","authors":"Brett Jeffrey Palmero , Emily Gamero , Niall M. Mangan , Danielle Tullman-Ercek","doi":"10.1016/j.ymben.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>A continual goal in metabolic engineering is directing pathway flux to desired products and avoiding loss of pathway intermediates to competing pathways. Encapsulation of the pathway is a possible solution, as it creates a diffusion barrier between pathway intermediates and competing enzymes. It is hypothesized that bacteria use organelles known as bacterial microcompartments - proteinaceous shells encapsulating a metabolic pathway - for this purpose. We aim to determine to what degree this hypothesized benefit is conferred to encapsulated pathways. To this end, we used bacterial microcompartments to encapsulate select enzymes from the violacein pathway, which is composed of five enzymes that produce violacein as the main product and deoxyviolacein as a side product. Importantly, we studied the pathway in a cell-free context, allowing us to hold constant the concentration of unencapsulated and encapsulated enzymes and increase our control over reaction conditions. The VioE enzyme is a branch point in that it makes the precursor for both violacein and deoxyviolacein, the VioC enzyme is required for production of deoxyviolacein, and the VioD enzyme is required for violacein production. When we encapsulated VioE and VioC and left VioD unencapsulated, the product profile shifted toward deoxyviolacein and away from violacein compared to when VioC and VioD were both unencapsulated. This work provides the first fully quantitative evidence that microcompartment-based encapsulation can be used to divert pathway flux to the encapsulated pathway. It provides insight into why certain pathways are encapsulated natively and could be leveraged for metabolic engineering applications.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 91-102"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000539","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A continual goal in metabolic engineering is directing pathway flux to desired products and avoiding loss of pathway intermediates to competing pathways. Encapsulation of the pathway is a possible solution, as it creates a diffusion barrier between pathway intermediates and competing enzymes. It is hypothesized that bacteria use organelles known as bacterial microcompartments - proteinaceous shells encapsulating a metabolic pathway - for this purpose. We aim to determine to what degree this hypothesized benefit is conferred to encapsulated pathways. To this end, we used bacterial microcompartments to encapsulate select enzymes from the violacein pathway, which is composed of five enzymes that produce violacein as the main product and deoxyviolacein as a side product. Importantly, we studied the pathway in a cell-free context, allowing us to hold constant the concentration of unencapsulated and encapsulated enzymes and increase our control over reaction conditions. The VioE enzyme is a branch point in that it makes the precursor for both violacein and deoxyviolacein, the VioC enzyme is required for production of deoxyviolacein, and the VioD enzyme is required for violacein production. When we encapsulated VioE and VioC and left VioD unencapsulated, the product profile shifted toward deoxyviolacein and away from violacein compared to when VioC and VioD were both unencapsulated. This work provides the first fully quantitative evidence that microcompartment-based encapsulation can be used to divert pathway flux to the encapsulated pathway. It provides insight into why certain pathways are encapsulated natively and could be leveraged for metabolic engineering applications.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.