Albert Burgas-Pau, Jaume Gardela, Carles Aranda, Marta Verdún, Raquel Rivas, Núria Pujol, Jordi Figuerola, Núria Busquets
{"title":"Laboratory evidence on the vector competence of European field-captured Culex theileri for circulating West Nile virus lineages 1 and 2.","authors":"Albert Burgas-Pau, Jaume Gardela, Carles Aranda, Marta Verdún, Raquel Rivas, Núria Pujol, Jordi Figuerola, Núria Busquets","doi":"10.1186/s13071-025-06763-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Culex theileri (Theobald, 1903) is distributed in Afrotropical, Paleartic, and Oriental regions. It is a mainly mammophilic floodwater mosquito that is involved in the transmission of West Nile virus (WNV, renamed as Orthoflavivirus nilense by the International Committee on Taxonomy of Viruses [ICTV]) in Africa. This virus is a mosquito-borne flavivirus that is kept in an enzootic cycle mainly between birds and mosquitoes of the Culex genus. Occasionally, it affects mammals including humans and equines causing encephalopathies. The main purpose of the present study was to evaluate the vector competence of a European field-captured Cx. theileri population for circulating WNV lineages (1 and 2).</p><p><strong>Methods: </strong>Field-collected Cx. theileri larvae from Sevilla province (Spain) were reared in the laboratory under summer environmental conditions. To assess the vector competence for WNV transmission, 10-12 day old Cx. theileri females were fed with blood doped with WNV lineages 1 and 2 (7 log<sub>10</sub> TCID<sub>50</sub>/mL). Females were sacrificed at 14- and 21- days post exposure (dpe), and their head, body, and saliva were extracted to assess infection, dissemination, and transmission rates, as well as transmission efficiency.</p><p><strong>Results: </strong>A Culex theileri population was experimentally confirmed as a highly competent vector for WNV (both lineages 1 and 2). The virus successfully infected and disseminated within Cx. theileri mosquitoes, and infectious virus isolated from their saliva indicated their potential to transmit the virus. Transmission efficiency was 50% for lineage 1 (for both 14 and 21 dpe), while it was 24% and 37.5% for lineage 2, respectively. There was barely any effect of the midgut infection barrier for lineage 1 and a moderate effect for lineage 2. The main barrier which limited the virus infection within the mosquito was the midgut escape barrier.</p><p><strong>Conclusions: </strong>In the present study, the high transmission efficiency supports that Cx. theileri is competent to transmit WNV. However, vector density and feeding patterns of Cx. theileri mosquitoes must be considered when estimating their vectorial capacity for WNV in the field.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"132"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06763-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Culex theileri (Theobald, 1903) is distributed in Afrotropical, Paleartic, and Oriental regions. It is a mainly mammophilic floodwater mosquito that is involved in the transmission of West Nile virus (WNV, renamed as Orthoflavivirus nilense by the International Committee on Taxonomy of Viruses [ICTV]) in Africa. This virus is a mosquito-borne flavivirus that is kept in an enzootic cycle mainly between birds and mosquitoes of the Culex genus. Occasionally, it affects mammals including humans and equines causing encephalopathies. The main purpose of the present study was to evaluate the vector competence of a European field-captured Cx. theileri population for circulating WNV lineages (1 and 2).
Methods: Field-collected Cx. theileri larvae from Sevilla province (Spain) were reared in the laboratory under summer environmental conditions. To assess the vector competence for WNV transmission, 10-12 day old Cx. theileri females were fed with blood doped with WNV lineages 1 and 2 (7 log10 TCID50/mL). Females were sacrificed at 14- and 21- days post exposure (dpe), and their head, body, and saliva were extracted to assess infection, dissemination, and transmission rates, as well as transmission efficiency.
Results: A Culex theileri population was experimentally confirmed as a highly competent vector for WNV (both lineages 1 and 2). The virus successfully infected and disseminated within Cx. theileri mosquitoes, and infectious virus isolated from their saliva indicated their potential to transmit the virus. Transmission efficiency was 50% for lineage 1 (for both 14 and 21 dpe), while it was 24% and 37.5% for lineage 2, respectively. There was barely any effect of the midgut infection barrier for lineage 1 and a moderate effect for lineage 2. The main barrier which limited the virus infection within the mosquito was the midgut escape barrier.
Conclusions: In the present study, the high transmission efficiency supports that Cx. theileri is competent to transmit WNV. However, vector density and feeding patterns of Cx. theileri mosquitoes must be considered when estimating their vectorial capacity for WNV in the field.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.