Luise Puls, Lionel Llano, Ivan Zderic, Boyko Gueorguiev, Karl Stoffel
{"title":"Reducing femoral peri-implant fracture risk through optimized plate length and screw configuration - a biomechanical study.","authors":"Luise Puls, Lionel Llano, Ivan Zderic, Boyko Gueorguiev, Karl Stoffel","doi":"10.1186/s13018-025-05753-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Locked plating of femur fractures is associated with secondary peri-implant fractures which may be a result of stress concentrations at the proximal plate end region. The aim of this study was to investigate whether the strength of healed femoral bone-locking-compression-plate constructs can be increased by modifying the screw configurations and plate length to minimize the risks of peri-implant femur fractures.</p><p><strong>Methods: </strong>The detached shaft of a variable angle condylar locking compression plate (VA-LCP Condylar Plate; Johnson & Johnson MedTech) was fixed to the proximal two-third of twenty-four intact artificial femurs in four different configurations (n = 6) distinguished by either using a short plate with cortical or locking screws whereby the most proximal screw was inserted in the femoral shaft 50 mm below the lesser trochanter, or using a long plate with either cortical or locking screws whereby the most proximal screw was positioned in the femoral neck. Simulating a situation after fracture healing, constructs were cyclically tested under progressively increased loading until catastrophic failure.</p><p><strong>Results: </strong>Long plates fixed with a cortical screws demonstrated the highest failure load (1091 N ± 142 N) which was significantly higher compared to long plates fixed with locking screws (888 N ± 80 N), short plates fixed with cortical screws (471 N ± 42 N), and short plates fixed with locking screws (450 N ± 19 N). In addition, whereas the locking screw construct with a long plate was associated with a significantly higher failure load compared to both short plate constructs, there were no significant differences between the latter two. The failure modes were predominantly characterized by neck screw pull-out in both long plate constructs and peri-implant bone fractures at the most proximal screw in both constructs with short plates. None of the specimens exhibited a femoral neck fracture.</p><p><strong>Conclusion: </strong>The findings of this study performed on synthetic bones indicate that from a biomechanical perspective long plates that extend into the femoral neck sustained higher failure loads compared to short plates. In addition, long plates fixed with a cortical neck screw further enhanced the construct strength and reduced the risk of peri-implant fractures compared to the use of a locking neck screw. Therefore, this study supports the use of long locking plates combined with use of cortical neck screws, particularly in high-risk patients, such as those with severe osteoporosis.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"340"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05753-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Locked plating of femur fractures is associated with secondary peri-implant fractures which may be a result of stress concentrations at the proximal plate end region. The aim of this study was to investigate whether the strength of healed femoral bone-locking-compression-plate constructs can be increased by modifying the screw configurations and plate length to minimize the risks of peri-implant femur fractures.
Methods: The detached shaft of a variable angle condylar locking compression plate (VA-LCP Condylar Plate; Johnson & Johnson MedTech) was fixed to the proximal two-third of twenty-four intact artificial femurs in four different configurations (n = 6) distinguished by either using a short plate with cortical or locking screws whereby the most proximal screw was inserted in the femoral shaft 50 mm below the lesser trochanter, or using a long plate with either cortical or locking screws whereby the most proximal screw was positioned in the femoral neck. Simulating a situation after fracture healing, constructs were cyclically tested under progressively increased loading until catastrophic failure.
Results: Long plates fixed with a cortical screws demonstrated the highest failure load (1091 N ± 142 N) which was significantly higher compared to long plates fixed with locking screws (888 N ± 80 N), short plates fixed with cortical screws (471 N ± 42 N), and short plates fixed with locking screws (450 N ± 19 N). In addition, whereas the locking screw construct with a long plate was associated with a significantly higher failure load compared to both short plate constructs, there were no significant differences between the latter two. The failure modes were predominantly characterized by neck screw pull-out in both long plate constructs and peri-implant bone fractures at the most proximal screw in both constructs with short plates. None of the specimens exhibited a femoral neck fracture.
Conclusion: The findings of this study performed on synthetic bones indicate that from a biomechanical perspective long plates that extend into the femoral neck sustained higher failure loads compared to short plates. In addition, long plates fixed with a cortical neck screw further enhanced the construct strength and reduced the risk of peri-implant fractures compared to the use of a locking neck screw. Therefore, this study supports the use of long locking plates combined with use of cortical neck screws, particularly in high-risk patients, such as those with severe osteoporosis.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.