Engineered endoplasmic reticulum-targeting nanodrugs with Piezo1 inhibition and promotion of cell uptake for subarachnoid hemorrhage inflammation repair.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaojian Zhang, Enyan Jiang, Wangyang Fu, Yuanyuan Wang, Yiping Wang, Zhen Fang, Zichen Zhang, Jiajia Duan, Jia Zeng, Yang Yan, Fei Liu
{"title":"Engineered endoplasmic reticulum-targeting nanodrugs with Piezo1 inhibition and promotion of cell uptake for subarachnoid hemorrhage inflammation repair.","authors":"Xiaojian Zhang, Enyan Jiang, Wangyang Fu, Yuanyuan Wang, Yiping Wang, Zhen Fang, Zichen Zhang, Jiajia Duan, Jia Zeng, Yang Yan, Fei Liu","doi":"10.1186/s12951-025-03305-1","DOIUrl":null,"url":null,"abstract":"<p><p>Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular condition, often presenting with severe headaches caused by intracranial hypertension, which in severe cases can lead to brain herniation. Piezo1 is a mechanosensitive ion channel protein whose mechanical properties are closely linked to central nervous system diseases. In this study, we developed an engineered endoplasmic reticulum membrane-based nanomedicine (CAQKERM@GsMTx4) using HEK293T cells, aimed at targeted delivery to acute hemorrhagic regions, rapid absorption, and precise inhibition of Piezo1 therapy. To ensure optimal targeting and therapeutic efficacy, we fused the CAQK peptide gene to the N-terminus of TRP-PK1, presenting the CAQK peptide on the endoplasmic reticulum membrane, and loaded GsMTx4 into engineered vesicles (EVs) derived from this engineered membrane. Through in vivo and in vitro experiments and multi-omics analysis, we have demonstrated the marked advantages of endoplasmic reticulum membrane vesicles over cell membrane-based vesicles. CAQKERM@GsMTx4 successfully inhibits Piezo1 in SAH, helps microglia change from the M1 phenotype to the M2 phenotype, and inhibits inflammatory responses and neuronal damage. Overall, this novel engineered endoplasmic reticulum membrane nanomedicine provides a potential effective strategy for the clinical treatment of subarachnoid hemorrhage.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"274"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03305-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular condition, often presenting with severe headaches caused by intracranial hypertension, which in severe cases can lead to brain herniation. Piezo1 is a mechanosensitive ion channel protein whose mechanical properties are closely linked to central nervous system diseases. In this study, we developed an engineered endoplasmic reticulum membrane-based nanomedicine (CAQKERM@GsMTx4) using HEK293T cells, aimed at targeted delivery to acute hemorrhagic regions, rapid absorption, and precise inhibition of Piezo1 therapy. To ensure optimal targeting and therapeutic efficacy, we fused the CAQK peptide gene to the N-terminus of TRP-PK1, presenting the CAQK peptide on the endoplasmic reticulum membrane, and loaded GsMTx4 into engineered vesicles (EVs) derived from this engineered membrane. Through in vivo and in vitro experiments and multi-omics analysis, we have demonstrated the marked advantages of endoplasmic reticulum membrane vesicles over cell membrane-based vesicles. CAQKERM@GsMTx4 successfully inhibits Piezo1 in SAH, helps microglia change from the M1 phenotype to the M2 phenotype, and inhibits inflammatory responses and neuronal damage. Overall, this novel engineered endoplasmic reticulum membrane nanomedicine provides a potential effective strategy for the clinical treatment of subarachnoid hemorrhage.

具有Piezo1抑制和促进细胞摄取的工程内质网靶向纳米药物用于蛛网膜下腔出血炎症修复。
蛛网膜下腔出血(SAH)是一种危及生命的急性出血性脑血管疾病,常表现为颅内高压引起的严重头痛,严重者可导致脑疝。Piezo1是一种机械敏感的离子通道蛋白,其机械特性与中枢神经系统疾病密切相关。在这项研究中,我们利用HEK293T细胞开发了一种基于工程内质网膜的纳米药物(CAQKERM@GsMTx4),旨在靶向递送到急性出血区域,快速吸收,并精确抑制Piezo1治疗。为了确保最佳的靶向性和治疗效果,我们将CAQK肽基因融合到TRP-PK1的n端,将CAQK肽呈现在内质网膜上,并将GsMTx4装载到由该工程膜衍生的工程囊泡(EVs)中。通过体内外实验和多组学分析,我们证明了内质网膜囊泡比细胞膜基囊泡具有明显的优势。CAQKERM@GsMTx4成功抑制SAH中的Piezo1,帮助小胶质细胞从M1表型转变为M2表型,并抑制炎症反应和神经元损伤。总之,这种新型工程内质网膜纳米药物为临床治疗蛛网膜下腔出血提供了一种潜在的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信