Gabriele Sebastianelli, Daniele Secci, Francesco Casillo, Chiara Abagnale, Cherubino Di Lorenzo, Mariano Serrao, Shuu-Jiun Wang, Fu-Jung Hsiao, Gianluca Coppola
{"title":"Artificial neural networks applied to somatosensory evoked potentials for migraine classification.","authors":"Gabriele Sebastianelli, Daniele Secci, Francesco Casillo, Chiara Abagnale, Cherubino Di Lorenzo, Mariano Serrao, Shuu-Jiun Wang, Fu-Jung Hsiao, Gianluca Coppola","doi":"10.1186/s10194-025-01989-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including reduced thalamocortical activity and abnormal habituation during the interictal phase. Although these insights into migraine pathophysiology have been valuable, they are not currently used in clinical practice. This study aims to evaluate the potential of Artificial Neural Networks (ANNs) in distinguishing migraine patients from healthy individuals using neurophysiological recordings.</p><p><strong>Methods: </strong>We recorded Somatosensory Evoked Potentials (SSEPs) to gather electrophysiological data from low- and high-frequency signal bands in 177 participants, comprising 91 migraine patients (MO) during their interictal period and 86 healthy volunteers (HV). Eleven neurophysiological variables were analyzed, and Principal Component Analysis (PCA) and Forward Feature Selection (FFS) techniques were independently employed to identify relevant variables, refine the feature space, and enhance model interpretability. The ANNs were then trained independently with the features derived from the PCA and FFS to delineate the relationship between electrophysiological inputs and the diagnostic outcome.</p><p><strong>Results: </strong>Both models demonstrated robust performance, achieving over 68% in all the performance metrics (accuracy, sensitivity, specificity, and F1 scores). The classification model trained with FFS-derived features performed better than the model trained with PCA results in distinguishing patients with MO from HV. The model trained with FFS-derived features achieved a median accuracy of 72.8% and an area under the curve (AUC) of 0.79, while the model trained with PCA results showed a median accuracy of 68.9% and an AUC of 0.75.</p><p><strong>Conclusion: </strong>Our findings suggest that ANNs trained with SSEP-derived variables hold promise as a noninvasive tool for migraine classification, offering potential for clinical application and deeper insights into migraine diagnostics.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"67"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-01989-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including reduced thalamocortical activity and abnormal habituation during the interictal phase. Although these insights into migraine pathophysiology have been valuable, they are not currently used in clinical practice. This study aims to evaluate the potential of Artificial Neural Networks (ANNs) in distinguishing migraine patients from healthy individuals using neurophysiological recordings.
Methods: We recorded Somatosensory Evoked Potentials (SSEPs) to gather electrophysiological data from low- and high-frequency signal bands in 177 participants, comprising 91 migraine patients (MO) during their interictal period and 86 healthy volunteers (HV). Eleven neurophysiological variables were analyzed, and Principal Component Analysis (PCA) and Forward Feature Selection (FFS) techniques were independently employed to identify relevant variables, refine the feature space, and enhance model interpretability. The ANNs were then trained independently with the features derived from the PCA and FFS to delineate the relationship between electrophysiological inputs and the diagnostic outcome.
Results: Both models demonstrated robust performance, achieving over 68% in all the performance metrics (accuracy, sensitivity, specificity, and F1 scores). The classification model trained with FFS-derived features performed better than the model trained with PCA results in distinguishing patients with MO from HV. The model trained with FFS-derived features achieved a median accuracy of 72.8% and an area under the curve (AUC) of 0.79, while the model trained with PCA results showed a median accuracy of 68.9% and an AUC of 0.75.
Conclusion: Our findings suggest that ANNs trained with SSEP-derived variables hold promise as a noninvasive tool for migraine classification, offering potential for clinical application and deeper insights into migraine diagnostics.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.