Zhi-Ying Kang, Nan-Xia Xuan, Qi-Chao Zhou, Qian-Yu Huang, Meng-Jia Yu, Gen-Sheng Zhang, Wei Cui, Zhao-Cai Zhang, Yang Du, Bao-Ping Tian
{"title":"Targeting alveolar epithelial cells with lipid micelle-encapsulated necroptosis inhibitors to alleviate acute lung injury.","authors":"Zhi-Ying Kang, Nan-Xia Xuan, Qi-Chao Zhou, Qian-Yu Huang, Meng-Jia Yu, Gen-Sheng Zhang, Wei Cui, Zhao-Cai Zhang, Yang Du, Bao-Ping Tian","doi":"10.1038/s42003-025-08010-1","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS), represents a critical condition characterized by extensive inflammation within the airways. Necroptosis, a form of cell death, has been implicated in the pathogenesis of various inflammatory diseases. However, the precise characteristics and mechanisms of necroptosis in ARDS remain unclear. Thus, our study seeks to elucidate the specific alterations and regulatory factors associated with necroptosis in ARDS and to identify potential therapeutic targets for the disease. We discovered that necroptosis mediates the progression of ALI through the activation and formation of the RIPK1/RIPK3/MLKL complex. Moreover, we substantiated the involvement of both MYD88 and TRIF in the activation of the TLR4 signaling pathway in ALI. Furthermore, we have developed a lipid micelle-encapsulated drug targeting MLKL in alveolar type II epithelial cells and successfully applied it to treat ALI in mice. This targeted nanoparticle selectively inhibited necroptosis, thereby mitigating epithelial cell damage and reducing inflammatory injury. Our study delves into the specific mechanisms of necroptosis in ALI and proposes novel targeted therapeutic agents, presenting innovative strategies for the management of ARDS.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"573"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08010-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS), represents a critical condition characterized by extensive inflammation within the airways. Necroptosis, a form of cell death, has been implicated in the pathogenesis of various inflammatory diseases. However, the precise characteristics and mechanisms of necroptosis in ARDS remain unclear. Thus, our study seeks to elucidate the specific alterations and regulatory factors associated with necroptosis in ARDS and to identify potential therapeutic targets for the disease. We discovered that necroptosis mediates the progression of ALI through the activation and formation of the RIPK1/RIPK3/MLKL complex. Moreover, we substantiated the involvement of both MYD88 and TRIF in the activation of the TLR4 signaling pathway in ALI. Furthermore, we have developed a lipid micelle-encapsulated drug targeting MLKL in alveolar type II epithelial cells and successfully applied it to treat ALI in mice. This targeted nanoparticle selectively inhibited necroptosis, thereby mitigating epithelial cell damage and reducing inflammatory injury. Our study delves into the specific mechanisms of necroptosis in ALI and proposes novel targeted therapeutic agents, presenting innovative strategies for the management of ARDS.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.