Spatially informed graph transformers for spatially resolved transcriptomics.

IF 5.2 1区 生物学 Q1 BIOLOGY
Xinyu Bao, Xiaosheng Bai, Xiaoping Liu, Qianqian Shi, Chuanchao Zhang
{"title":"Spatially informed graph transformers for spatially resolved transcriptomics.","authors":"Xinyu Bao, Xiaosheng Bai, Xiaoping Liu, Qianqian Shi, Chuanchao Zhang","doi":"10.1038/s42003-025-08015-w","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) has emerged as a powerful technique for mapping gene expression landscapes within spatial contexts. However, significant challenges persist in effectively integrating gene expression with spatial information to elucidate the heterogeneity of biological tissues. Here, we present a Spatially informed Graph Transformers framework, SpaGT, which leverages both node and edge channels to model spatially aware graph representation for denoising gene expression and identifying spatial domains. Unlike conventional graph neural networks, which rely on static, localized convolutional aggregation, SpaGT employs a structure-reinforced self-attention mechanism that iteratively evolves topological structural information and transcriptional signal representation. By replacing graph convolution with global self-attention, SpaGT enables the integration of both global and spatially localized information, thereby improving the detection of fine-grained spatial domains. We demonstrate that SpaGT achieves superior performance in identifying spatial domains and denoising gene expression data across diverse platforms and species. Furthermore, SpaGT facilitates the discovery of spatially variable genes with significant prognostic potential in cancer tissues. These findings establish SpaGT as a powerful tool for unraveling the complexities of biological tissues.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"574"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08015-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) has emerged as a powerful technique for mapping gene expression landscapes within spatial contexts. However, significant challenges persist in effectively integrating gene expression with spatial information to elucidate the heterogeneity of biological tissues. Here, we present a Spatially informed Graph Transformers framework, SpaGT, which leverages both node and edge channels to model spatially aware graph representation for denoising gene expression and identifying spatial domains. Unlike conventional graph neural networks, which rely on static, localized convolutional aggregation, SpaGT employs a structure-reinforced self-attention mechanism that iteratively evolves topological structural information and transcriptional signal representation. By replacing graph convolution with global self-attention, SpaGT enables the integration of both global and spatially localized information, thereby improving the detection of fine-grained spatial domains. We demonstrate that SpaGT achieves superior performance in identifying spatial domains and denoising gene expression data across diverse platforms and species. Furthermore, SpaGT facilitates the discovery of spatially variable genes with significant prognostic potential in cancer tissues. These findings establish SpaGT as a powerful tool for unraveling the complexities of biological tissues.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信