Flexible integration of spatial and expression information for precise spot embedding via ZINB-based graph-enhanced autoencoder.

IF 5.2 1区 生物学 Q1 BIOLOGY
Jiacheng Leng, Jiating Yu, Ling-Yun Wu, Hongyang Chen
{"title":"Flexible integration of spatial and expression information for precise spot embedding via ZINB-based graph-enhanced autoencoder.","authors":"Jiacheng Leng, Jiating Yu, Ling-Yun Wu, Hongyang Chen","doi":"10.1038/s42003-025-07965-5","DOIUrl":null,"url":null,"abstract":"<p><p>Domain identification is a critical problem in spatially resolved transcriptomics data analysis, which aims to identify distinct spatial domains within a tissue that maintain both spatial continuity and expression consistency. The degree of coupling between expression data and spatial information in different datasets often varies significantly. Some regions have intact and clear boundaries, while others exhibit blurred boundaries with high intra-domain expression similarity. However, most domain identification methods do not adequately integrate expression and spatial information to flexibly identify different types of domains. To address these issues, we introduce Spot2vector, a computational framework that leverages a graph-enhanced autoencoder integrating zero-inflated negative binomial distribution modeling, combining both graph convolutional networks and graph attention networks to extract the latent embeddings of spots. Spot2vector encodes and integrates spatial and expression information, enabling effective identification of domains with diverse spatial patterns across spatially resolved transcriptomics data generated by different platforms. The decoders enable us to decipher the distribution and generation mechanisms of data while improving expression quality through denoising. Extensive validation and analyses demonstrate that Spot2vector excels in enhancing domain identification accuracy, effectively reducing data dimensionality, improving expression recovery and denoising, and precisely capturing spatial gene expression patterns.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"556"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07965-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Domain identification is a critical problem in spatially resolved transcriptomics data analysis, which aims to identify distinct spatial domains within a tissue that maintain both spatial continuity and expression consistency. The degree of coupling between expression data and spatial information in different datasets often varies significantly. Some regions have intact and clear boundaries, while others exhibit blurred boundaries with high intra-domain expression similarity. However, most domain identification methods do not adequately integrate expression and spatial information to flexibly identify different types of domains. To address these issues, we introduce Spot2vector, a computational framework that leverages a graph-enhanced autoencoder integrating zero-inflated negative binomial distribution modeling, combining both graph convolutional networks and graph attention networks to extract the latent embeddings of spots. Spot2vector encodes and integrates spatial and expression information, enabling effective identification of domains with diverse spatial patterns across spatially resolved transcriptomics data generated by different platforms. The decoders enable us to decipher the distribution and generation mechanisms of data while improving expression quality through denoising. Extensive validation and analyses demonstrate that Spot2vector excels in enhancing domain identification accuracy, effectively reducing data dimensionality, improving expression recovery and denoising, and precisely capturing spatial gene expression patterns.

通过基于 ZINB 的图增强自动编码器灵活整合空间和表达信息,实现精确的光斑嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信