Single-cell 5-hydroxymethylcytosine landscapes of mouse early embryos at single-base resolution.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Dongsheng Bai, Jinmin Yang, Xiaohui Xue, Yun Gao, Yan Wang, Mengge Cui, Bo He, Hu Zeng, Huifen Xiang, Zijian Guo, Lan Zhu, Juan Gao, Chenxu Zhu, Fuchou Tang, Chengqi Yi
{"title":"Single-cell 5-hydroxymethylcytosine landscapes of mouse early embryos at single-base resolution.","authors":"Dongsheng Bai, Jinmin Yang, Xiaohui Xue, Yun Gao, Yan Wang, Mengge Cui, Bo He, Hu Zeng, Huifen Xiang, Zijian Guo, Lan Zhu, Juan Gao, Chenxu Zhu, Fuchou Tang, Chengqi Yi","doi":"10.1016/j.celrep.2025.115520","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115520"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115520","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信