Dongsheng Bai, Jinmin Yang, Xiaohui Xue, Yun Gao, Yan Wang, Mengge Cui, Bo He, Hu Zeng, Huifen Xiang, Zijian Guo, Lan Zhu, Juan Gao, Chenxu Zhu, Fuchou Tang, Chengqi Yi
{"title":"Single-cell 5-hydroxymethylcytosine landscapes of mouse early embryos at single-base resolution.","authors":"Dongsheng Bai, Jinmin Yang, Xiaohui Xue, Yun Gao, Yan Wang, Mengge Cui, Bo He, Hu Zeng, Huifen Xiang, Zijian Guo, Lan Zhu, Juan Gao, Chenxu Zhu, Fuchou Tang, Chengqi Yi","doi":"10.1016/j.celrep.2025.115520","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115520"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115520","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.