{"title":"Comprehensive PTM profiling with SCASP-PTM uncovers mechanisms of p62 degradation and ALDOA-mediated tumor progression.","authors":"Zhan-Peng Lin, Guohong Gan, Xiao Xu, Chengwen Wen, Xin Ding, Xiang-Yu Chen, Kaijie Zhang, Wen-Yu Guo, Mingxin Lin, Yu-Yang Wang, Xi Chen, Changchuan Xie, Jinling Wang, Minjie Li, Chuan-Qi Zhong","doi":"10.1016/j.celrep.2025.115500","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple post-translational modification (PTM) proteomics typically combines PTM enrichment with multiplex isobaric labeling and peptide fractionation. However, effective methods for sequentially enriching multiple PTMs from a single sample for data-independent acquisition mass spectrometry (DIA-MS) remain lacking. We present SDS-cyclodextrin-assisted sample preparation (SCASP)-PTM, an approach that enables desalting-free enrichment of diverse PTMs, including phosphopeptides, ubiquitinated peptides, acetylated peptides, glycopeptides, and biotinylated peptides. SCASP-PTM uses SDS for protein denaturation, which is sequestered by cyclodextrins before trypsin digestion, facilitating sequential PTM enrichment without additional purification steps. Combined with DIA-MS, SCASP-PTM quantifies the proteome, ubiquitinome, phosphoproteome, and glycoproteome in HeLa-S3 cell samples, identifying serine 28 phosphorylation as a key driver of poly(I:C)-induced p62 degradation. This method also quantifies PTMs in clinical tissue samples, revealing the critical role of ALDOA K330 ubiquitination/acetylation in tumor progression. SCASP-PTM offers a streamlined workflow for comprehensive PTM analysis in both basic research and clinical applications.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115500"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115500","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple post-translational modification (PTM) proteomics typically combines PTM enrichment with multiplex isobaric labeling and peptide fractionation. However, effective methods for sequentially enriching multiple PTMs from a single sample for data-independent acquisition mass spectrometry (DIA-MS) remain lacking. We present SDS-cyclodextrin-assisted sample preparation (SCASP)-PTM, an approach that enables desalting-free enrichment of diverse PTMs, including phosphopeptides, ubiquitinated peptides, acetylated peptides, glycopeptides, and biotinylated peptides. SCASP-PTM uses SDS for protein denaturation, which is sequestered by cyclodextrins before trypsin digestion, facilitating sequential PTM enrichment without additional purification steps. Combined with DIA-MS, SCASP-PTM quantifies the proteome, ubiquitinome, phosphoproteome, and glycoproteome in HeLa-S3 cell samples, identifying serine 28 phosphorylation as a key driver of poly(I:C)-induced p62 degradation. This method also quantifies PTMs in clinical tissue samples, revealing the critical role of ALDOA K330 ubiquitination/acetylation in tumor progression. SCASP-PTM offers a streamlined workflow for comprehensive PTM analysis in both basic research and clinical applications.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.