Unveiling the hidden effect of multi-morbidities on the severity of Covid-19: a latent class analysis approach.

IF 3.5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Sedigheh Akhavnnezhad, Seyedeh Solmaz Talebi, Ehsan Mosa Farkhani, Marzieh Rohani-Rasaf
{"title":"Unveiling the hidden effect of multi-morbidities on the severity of Covid-19: a latent class analysis approach.","authors":"Sedigheh Akhavnnezhad, Seyedeh Solmaz Talebi, Ehsan Mosa Farkhani, Marzieh Rohani-Rasaf","doi":"10.1186/s12889-025-22523-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epidemiological studies showed that Covid-19 patients with underlying diseases had higher rates of severe Covid-19. Previous studies focused on the presence of a single chronic disease but this study investigated the prevalence and patterns of multi-morbidities in patients with Covid-19 and its relationship with the severity of Covid-19.</p><p><strong>Methods: </strong>This retrospective study focused on patients age 30 years and older with positive polymerase chain reaction (PCR) results in 24 hospitals of Mashhad in northeastern Iran from 20-3-2020 to 21-1-2022. The number of studied confirmed patients was 318,502. The underlying diseases were identified according to the International Classification of Diseases, and the severity of Covid-19, including death, need for ventilation, and need for treatment in the intensive care unit (ICU). The pattern of multi-morbidities in these confirmed cases was investigated using latent class analysis (LCA), and the relationship between this pattern and the severity of Covid-19 was determined by multivariate logistic regression.</p><p><strong>Results: </strong>The most common coexisting diseases were hypertension in 30,100 patients (9.5%), metabolic disorders in 23,798 (7.5%) and hyperlipidemia in 22,454 (7%). Different comorbidities were grouped into three classes by the LCA model. Class 1 was patients without multi-morbidities, or 83% people., Class 2, which included 9% patients, was patients with hypertension, diabetes, respiratory diseases, and mental behavioral disorders (HRMD class). Class 3, which included patients with metabolic diseases, for whom the probability of developing hypertension, hyperlipidemia, diabetes, and metabolic disorders was high, included 7% patients. The results of multivariate logistic regression showed that having HRMD and metabolic diseases compared to no multi-morbidity adjusted for some risk factors increased the odds of developing severe Covid-19 by 81% and 55%, respectively.</p><p><strong>Conclusions: </strong>The classes identified in this study provided a clear view of different groups of Covid-19 patients with certain multi-morbidities and underscore the importance of considering these patterns, rather than individual comorbidities, in risk assessment and management of COVID-19 patients. This approach will guide clinical decision-making and resource allocation in the ongoing management of the COVID-19 pandemic.</p>","PeriodicalId":9039,"journal":{"name":"BMC Public Health","volume":"25 1","pages":"1272"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12889-025-22523-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Epidemiological studies showed that Covid-19 patients with underlying diseases had higher rates of severe Covid-19. Previous studies focused on the presence of a single chronic disease but this study investigated the prevalence and patterns of multi-morbidities in patients with Covid-19 and its relationship with the severity of Covid-19.

Methods: This retrospective study focused on patients age 30 years and older with positive polymerase chain reaction (PCR) results in 24 hospitals of Mashhad in northeastern Iran from 20-3-2020 to 21-1-2022. The number of studied confirmed patients was 318,502. The underlying diseases were identified according to the International Classification of Diseases, and the severity of Covid-19, including death, need for ventilation, and need for treatment in the intensive care unit (ICU). The pattern of multi-morbidities in these confirmed cases was investigated using latent class analysis (LCA), and the relationship between this pattern and the severity of Covid-19 was determined by multivariate logistic regression.

Results: The most common coexisting diseases were hypertension in 30,100 patients (9.5%), metabolic disorders in 23,798 (7.5%) and hyperlipidemia in 22,454 (7%). Different comorbidities were grouped into three classes by the LCA model. Class 1 was patients without multi-morbidities, or 83% people., Class 2, which included 9% patients, was patients with hypertension, diabetes, respiratory diseases, and mental behavioral disorders (HRMD class). Class 3, which included patients with metabolic diseases, for whom the probability of developing hypertension, hyperlipidemia, diabetes, and metabolic disorders was high, included 7% patients. The results of multivariate logistic regression showed that having HRMD and metabolic diseases compared to no multi-morbidity adjusted for some risk factors increased the odds of developing severe Covid-19 by 81% and 55%, respectively.

Conclusions: The classes identified in this study provided a clear view of different groups of Covid-19 patients with certain multi-morbidities and underscore the importance of considering these patterns, rather than individual comorbidities, in risk assessment and management of COVID-19 patients. This approach will guide clinical decision-making and resource allocation in the ongoing management of the COVID-19 pandemic.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Public Health
BMC Public Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.50
自引率
4.40%
发文量
2108
审稿时长
1 months
期刊介绍: BMC Public Health is an open access, peer-reviewed journal that considers articles on the epidemiology of disease and the understanding of all aspects of public health. The journal has a special focus on the social determinants of health, the environmental, behavioral, and occupational correlates of health and disease, and the impact of health policies, practices and interventions on the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信