{"title":"CircARID1B Promotes MPP<sup>+</sup>-Induced Death and Inflammation in Dopaminergic Neurons by Elevating MAVS Through Sequestering miR-143-3p.","authors":"Xuejie Zhang, Xuan Shi, Zhining Liu","doi":"10.1007/s12013-025-01705-6","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence has shown the involvement of abnormal circRNA in neurodegenerative disease progression, including Parkinson's disease (PD). Hence, this work focused on probing the function and mechanism of circARID1B on PD progression.1-Methyl-4-phenylpyridinium (MPP+)-induced human dopaminergic SK-N-AS neuroblastoma cell models were used to mimic PD injury in vitro. qRT-PCR and western blotting analyses were used to detect the levels of genes and proteins. Cell death was evaluated by cell counting kit-8 assay, flow cytometry, and lactate dehydrogenase (LDH) activity. Oxidative stress was analyzed by measuring the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Cell inflammation was determined by ELISA analysis. The binding between miR-143-3p and circARID1B or mitochondrial antiviral signaling protein (MAVS) was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A high circARID1B expression was observed in MPP<sup>+</sup> treated SK-N-AS cells. Functionally, circARID1B deficiency suppressed MPP<sup>+</sup>-induced apoptosis, LDH release, oxidative stress and inflammatory response in SK-N-AS cells. Mechanistically, circARID1B bound to miR-143-3p, which was reduced in SK-N-AS cells after MPP<sup>+</sup> treatment. Moreover, miR-143-3p inhibition reversed the protective effects of circARID1B silencing on MPP<sup>+</sup>-treated SK-N-AS cells. Subsequently, we confirmed miR-143-3p directly targeted MAVS. MAVS was increased in SK-N-AS cells after MPP<sup>+</sup> treatment. Moreover, MAVS overexpression abolished miR-143-3p up-regulation-induced inhibition of cell apoptosis, LDH release, oxidative stress and inflammation. CircARID1B deficiency suppressed MPP+-induced neural death and inflammation by miR-143-3p/MAVS axis, which may offer an improved understanding of PD progression and be useful for the development of circRNA-based therapy in PD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01705-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence has shown the involvement of abnormal circRNA in neurodegenerative disease progression, including Parkinson's disease (PD). Hence, this work focused on probing the function and mechanism of circARID1B on PD progression.1-Methyl-4-phenylpyridinium (MPP+)-induced human dopaminergic SK-N-AS neuroblastoma cell models were used to mimic PD injury in vitro. qRT-PCR and western blotting analyses were used to detect the levels of genes and proteins. Cell death was evaluated by cell counting kit-8 assay, flow cytometry, and lactate dehydrogenase (LDH) activity. Oxidative stress was analyzed by measuring the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Cell inflammation was determined by ELISA analysis. The binding between miR-143-3p and circARID1B or mitochondrial antiviral signaling protein (MAVS) was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A high circARID1B expression was observed in MPP+ treated SK-N-AS cells. Functionally, circARID1B deficiency suppressed MPP+-induced apoptosis, LDH release, oxidative stress and inflammatory response in SK-N-AS cells. Mechanistically, circARID1B bound to miR-143-3p, which was reduced in SK-N-AS cells after MPP+ treatment. Moreover, miR-143-3p inhibition reversed the protective effects of circARID1B silencing on MPP+-treated SK-N-AS cells. Subsequently, we confirmed miR-143-3p directly targeted MAVS. MAVS was increased in SK-N-AS cells after MPP+ treatment. Moreover, MAVS overexpression abolished miR-143-3p up-regulation-induced inhibition of cell apoptosis, LDH release, oxidative stress and inflammation. CircARID1B deficiency suppressed MPP+-induced neural death and inflammation by miR-143-3p/MAVS axis, which may offer an improved understanding of PD progression and be useful for the development of circRNA-based therapy in PD.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.