Evaluating transcriptional alterations associated with ageing and developing age prediction models based on the human blood transcriptome.

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Ivan Duran, Amy Tsurumi
{"title":"Evaluating transcriptional alterations associated with ageing and developing age prediction models based on the human blood transcriptome.","authors":"Ivan Duran, Amy Tsurumi","doi":"10.1007/s10522-025-10216-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing-related DNA methylome and proteome changes and machine-learned ageing clock models have been described previously; however, there is a dearth of ageing clock prediction models based on human blood transcript information. Applying various machine learning algorithms is expected to aid in the development of age prediction models. Using blood transcriptome data from healthy subjects ranging in age from 21 to 90 in the 10 K Immunomes repository, we evaluated differentially regulated transcripts, assessed enriched gene ontology, pathway and disease ontology analysis to characterize biological functions associated with the genes associated with age. Furthermore, we constructed and compared age prediction models developed by applying the Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), eXtreme Gradient Boosting (XGBoost) and Light Gradient-Boosting Machine (LightGBM) algorithms. Compared to LASSO (7 genes) and EN (9 genes) regularized regression, XGBoost (142 genes) and LightGBM (149 genes) Gradient Boosted Decision Tree methods performed better in this dataset (training set r = 0.836 (LASSO), 0.837 (EN), 1.000 (XGBoost) and 0.995 (LightGBM); test set: r = 0.883 (LASSO), 0.876 (EN), 0.931 (XGBoost) and 0.915 (LightGBM); external validation set: r = 0.535 (LASSO), 0.534 (EN), 0.591 (XGBoost) and 0.645 (LightGBM)). Blood transcriptome-based age prediction models may provide a simple method to monitor biological ageing, and provide additional molecular insight. Future studies to externally validate these models in various diverse large populations and molecular studies to elucidate the underlying mechanisms by which the gene expression levels may be related to ageing phenotypes would be advantageous.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"86"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10216-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ageing-related DNA methylome and proteome changes and machine-learned ageing clock models have been described previously; however, there is a dearth of ageing clock prediction models based on human blood transcript information. Applying various machine learning algorithms is expected to aid in the development of age prediction models. Using blood transcriptome data from healthy subjects ranging in age from 21 to 90 in the 10 K Immunomes repository, we evaluated differentially regulated transcripts, assessed enriched gene ontology, pathway and disease ontology analysis to characterize biological functions associated with the genes associated with age. Furthermore, we constructed and compared age prediction models developed by applying the Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), eXtreme Gradient Boosting (XGBoost) and Light Gradient-Boosting Machine (LightGBM) algorithms. Compared to LASSO (7 genes) and EN (9 genes) regularized regression, XGBoost (142 genes) and LightGBM (149 genes) Gradient Boosted Decision Tree methods performed better in this dataset (training set r = 0.836 (LASSO), 0.837 (EN), 1.000 (XGBoost) and 0.995 (LightGBM); test set: r = 0.883 (LASSO), 0.876 (EN), 0.931 (XGBoost) and 0.915 (LightGBM); external validation set: r = 0.535 (LASSO), 0.534 (EN), 0.591 (XGBoost) and 0.645 (LightGBM)). Blood transcriptome-based age prediction models may provide a simple method to monitor biological ageing, and provide additional molecular insight. Future studies to externally validate these models in various diverse large populations and molecular studies to elucidate the underlying mechanisms by which the gene expression levels may be related to ageing phenotypes would be advantageous.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信