{"title":"Effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in SAMP8 mice.","authors":"Hanlin Jiang, Shota Inoue, Junpei Hatakeyama, Peng Liu, Tingrui Zhao, Yifan Zhang, Bin Liu, Chunxiao He, Hideki Moriyama","doi":"10.1007/s10522-025-10234-x","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle aging, characterized by progressive declines in muscle mass and strength, correlates with reduced quality of life and increased mortality. Resistance exercise is known to be critical for maintaining skeletal muscle health. This study investigated the effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in mice. Twenty-eight-week-old senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model for muscle aging, with senescence-accelerated mouse resistant 1 (SAMR1) mice serving as healthy controls. The mice underwent a 12-week regimen of ladder-climbing training, a form of resistance exercise, performed three days per week. After the training, muscle strength and muscle weight were measured. Levels of the longevity proteins adenosine monophosphate-activated kinase (AMPK), mammalian target of rapamycin (mTOR), and sirtuin 1 (SIRT1) were assessed via western blotting, and telomere length was evaluated by qPCR. SAMP8 mice exhibited significantly lower muscle mass and strength than SAMR1 mice, while resistance exercise attenuated these deficits in SAMP8 mice. SAMP8 mice showed elevated AMPK phosphorylation and SIRT1 levels compared to SAMR1 mice; resistance exercise normalized AMPK phosphorylation levels to approximate those of SAMR1 mice. mTOR activity was significantly reduced in SAMP8 mice but tended to be restored by resistance exercise. Telomere length remained unchanged in SAMP8 mice after resistance exercise compared to their sedentary controls. In conclusion, aging reduces muscle function and disrupts levels of longevity proteins. Resistance exercise mitigates these effects by improving muscle function and restoring molecular balance.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"88"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10234-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal muscle aging, characterized by progressive declines in muscle mass and strength, correlates with reduced quality of life and increased mortality. Resistance exercise is known to be critical for maintaining skeletal muscle health. This study investigated the effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in mice. Twenty-eight-week-old senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model for muscle aging, with senescence-accelerated mouse resistant 1 (SAMR1) mice serving as healthy controls. The mice underwent a 12-week regimen of ladder-climbing training, a form of resistance exercise, performed three days per week. After the training, muscle strength and muscle weight were measured. Levels of the longevity proteins adenosine monophosphate-activated kinase (AMPK), mammalian target of rapamycin (mTOR), and sirtuin 1 (SIRT1) were assessed via western blotting, and telomere length was evaluated by qPCR. SAMP8 mice exhibited significantly lower muscle mass and strength than SAMR1 mice, while resistance exercise attenuated these deficits in SAMP8 mice. SAMP8 mice showed elevated AMPK phosphorylation and SIRT1 levels compared to SAMR1 mice; resistance exercise normalized AMPK phosphorylation levels to approximate those of SAMR1 mice. mTOR activity was significantly reduced in SAMP8 mice but tended to be restored by resistance exercise. Telomere length remained unchanged in SAMP8 mice after resistance exercise compared to their sedentary controls. In conclusion, aging reduces muscle function and disrupts levels of longevity proteins. Resistance exercise mitigates these effects by improving muscle function and restoring molecular balance.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.