{"title":"Biosensing approaches in body fluids using extended-gate-type organic field-effect transistor enzymatic sensors.","authors":"Yui Sasaki, Tsuyoshi Minami","doi":"10.1007/s44211-025-00750-8","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarkers in body fluids provide essential chemical information for examining health conditions; however, unlike conventional instrumental approaches, easy-to-use analytical methods have not yet been fully established. This review introduces extended-gate-type organic field-effect transistors (OFETs) as biosensor platforms for real-sample analysis. OFETs are electronic devices that show switching profiles when gate voltages are applied. Therefore, the gate electrode of OFET functions as a sensing unit combined with appropriate molecular recognition materials. Owing to their signal amplification properties, OFETs enable sensitive biosensing. The extended-gate surfaces are easily functionalized with enzymatic layers using chemical modification, and these surfaces provide a high discrimination ability for specific biomarkers from their analogs. This review presents the designs of the extended-gate structures (i.e., integrated and separated styles) and their enzymatic layers and includes their actual sensing performance.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-025-00750-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biomarkers in body fluids provide essential chemical information for examining health conditions; however, unlike conventional instrumental approaches, easy-to-use analytical methods have not yet been fully established. This review introduces extended-gate-type organic field-effect transistors (OFETs) as biosensor platforms for real-sample analysis. OFETs are electronic devices that show switching profiles when gate voltages are applied. Therefore, the gate electrode of OFET functions as a sensing unit combined with appropriate molecular recognition materials. Owing to their signal amplification properties, OFETs enable sensitive biosensing. The extended-gate surfaces are easily functionalized with enzymatic layers using chemical modification, and these surfaces provide a high discrimination ability for specific biomarkers from their analogs. This review presents the designs of the extended-gate structures (i.e., integrated and separated styles) and their enzymatic layers and includes their actual sensing performance.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.