Jinyan Kai, Jiaqi Su, Yinping You, Xiaoliang Liang, Haitao Huang, Jie Fang, Qiong Chen
{"title":"Identifying key palmitoylation-associated genes in endometriosis through genomic data analysis.","authors":"Jinyan Kai, Jiaqi Su, Yinping You, Xiaoliang Liang, Haitao Huang, Jie Fang, Qiong Chen","doi":"10.1186/s12905-025-03697-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Palmitoylation, a post-translational lipid modification, has garnered increasing attention for its role in inflammatory processes and tumorigenesis. Emerging evidence suggests a potential association between palmitoylation and inflammatory responses in the pathogenesis of endometriosis. However, the precise mechanistic interplay remains elusive, necessitating further investigation.</p><p><strong>Methods: </strong>This study integrated transcriptomic analysis and Mendelian randomization (MR) to identify a causal gene set implicated in endometriosis. Differentially expressed genes (DEGs) were first identified in the training dataset using the limma package in R. Weighted gene co-expression network analysis (WGCNA) was subsequently performed, leveraging Single Sample Gene Set Enrichment Analysis (ssGSEA)-derived scores of palmitoylation-related genes (PRGs) as phenotypic traits to identify key modular genes. The intersection of these key modular genes with DEGs yielded a refined gene set. Machine learning algorithms were then applied to further optimize gene selection, followed by external validation, immune infiltration analysis, RNA network construction, and exploration of potential targeted drug candidates.</p><p><strong>Results: </strong>Through a rigorous screening process, VRK1, GALNT12, and RMI1 emerged as key genes associated with palmitoylation, exhibiting significant downregulation in endometriosis samples (P < 0.05), indicative of a potential protective role. Immune infiltration analysis further revealed strong correlations between these genes and M2 macrophages as well as resting Natural Killer (NK) cells. Additionally, investigations into the targeted RNA network and drug association profiling provided novel insights, laying the groundwork for future high-quality validation studies.</p><p><strong>Conclusions: </strong>This study employed a comprehensive analytical framework to identify palmitoylation-associated key genes in endometriosis. The integration of immunoinfiltration analysis, RNA network construction, and drug association profiling offers valuable insights for advancing clinical diagnostics, disease monitoring, and therapeutic development in endometriosis.</p>","PeriodicalId":9204,"journal":{"name":"BMC Women's Health","volume":"25 1","pages":"161"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Women's Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12905-025-03697-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Palmitoylation, a post-translational lipid modification, has garnered increasing attention for its role in inflammatory processes and tumorigenesis. Emerging evidence suggests a potential association between palmitoylation and inflammatory responses in the pathogenesis of endometriosis. However, the precise mechanistic interplay remains elusive, necessitating further investigation.
Methods: This study integrated transcriptomic analysis and Mendelian randomization (MR) to identify a causal gene set implicated in endometriosis. Differentially expressed genes (DEGs) were first identified in the training dataset using the limma package in R. Weighted gene co-expression network analysis (WGCNA) was subsequently performed, leveraging Single Sample Gene Set Enrichment Analysis (ssGSEA)-derived scores of palmitoylation-related genes (PRGs) as phenotypic traits to identify key modular genes. The intersection of these key modular genes with DEGs yielded a refined gene set. Machine learning algorithms were then applied to further optimize gene selection, followed by external validation, immune infiltration analysis, RNA network construction, and exploration of potential targeted drug candidates.
Results: Through a rigorous screening process, VRK1, GALNT12, and RMI1 emerged as key genes associated with palmitoylation, exhibiting significant downregulation in endometriosis samples (P < 0.05), indicative of a potential protective role. Immune infiltration analysis further revealed strong correlations between these genes and M2 macrophages as well as resting Natural Killer (NK) cells. Additionally, investigations into the targeted RNA network and drug association profiling provided novel insights, laying the groundwork for future high-quality validation studies.
Conclusions: This study employed a comprehensive analytical framework to identify palmitoylation-associated key genes in endometriosis. The integration of immunoinfiltration analysis, RNA network construction, and drug association profiling offers valuable insights for advancing clinical diagnostics, disease monitoring, and therapeutic development in endometriosis.
期刊介绍:
BMC Women''s Health is an open access, peer-reviewed journal that considers articles on all aspects of the health and wellbeing of adolescent girls and women, with a particular focus on the physical, mental, and emotional health of women in developed and developing nations. The journal welcomes submissions on women''s public health issues, health behaviours, breast cancer, gynecological diseases, mental health and health promotion.