Double-network hydrogels with a gradient hydrophobic coating that prevents water evaporation and allows strong adhesion to a solid substrate

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Shota Sakurai, Takayuki Kurokawa, Hidemitsu Furukawa, Jian Ping Gong, Tasuku Nakajima
{"title":"Double-network hydrogels with a gradient hydrophobic coating that prevents water evaporation and allows strong adhesion to a solid substrate","authors":"Shota Sakurai, Takayuki Kurokawa, Hidemitsu Furukawa, Jian Ping Gong, Tasuku Nakajima","doi":"10.1038/s41428-024-01010-8","DOIUrl":null,"url":null,"abstract":"Hydrogels are soft and wet polymeric materials containing large amounts of water. The high water content gives hydrogels their unique characteristics, such as biocompatibility. However, the water in the hydrogels easily evaporates under atmospheric conditions. In addition, since hydrogels consist of mostly water, adhering them to solid substrates with commercial glues is difficult. To overcome these problems, we developed a method to apply a robust gradient hydrophobic coating to tough double-network (DN) hydrogels. Liquid hydrophobic monomers were dropped onto the DN gel precursor (the first network gel containing the second network precursor) and spontaneously spread to cover the gel surface. This led to the simultaneous polymerization of the hydrophobic monomer near the gel–air interface and the second network precursor of the bulk gel to yield a gradient hydrophobic coating. The resulting hydrophobic coating effectively prevents water evaporation from the coated DN gel. Moreover, strong adhesion of the coated gel to various solid substrates was achieved with commercial glues. We report a method for a gradient hydrophobic coating of tough double-network (DN) hydrogels. The robust gradient coating was easily achieved by simultaneously polymerizing the hydrophilic second network precursor in a bulk first network gel and the hydrophobic coating precursor near its surface. The resulting hydrophobic coating effectively prevents water evaporation from the coated DN gel. Moreover, strong adhesion of the coated gel to various solid substrates was achieved with commercial glues.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 4","pages":"441-447"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-01010-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-01010-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels are soft and wet polymeric materials containing large amounts of water. The high water content gives hydrogels their unique characteristics, such as biocompatibility. However, the water in the hydrogels easily evaporates under atmospheric conditions. In addition, since hydrogels consist of mostly water, adhering them to solid substrates with commercial glues is difficult. To overcome these problems, we developed a method to apply a robust gradient hydrophobic coating to tough double-network (DN) hydrogels. Liquid hydrophobic monomers were dropped onto the DN gel precursor (the first network gel containing the second network precursor) and spontaneously spread to cover the gel surface. This led to the simultaneous polymerization of the hydrophobic monomer near the gel–air interface and the second network precursor of the bulk gel to yield a gradient hydrophobic coating. The resulting hydrophobic coating effectively prevents water evaporation from the coated DN gel. Moreover, strong adhesion of the coated gel to various solid substrates was achieved with commercial glues. We report a method for a gradient hydrophobic coating of tough double-network (DN) hydrogels. The robust gradient coating was easily achieved by simultaneously polymerizing the hydrophilic second network precursor in a bulk first network gel and the hydrophobic coating precursor near its surface. The resulting hydrophobic coating effectively prevents water evaporation from the coated DN gel. Moreover, strong adhesion of the coated gel to various solid substrates was achieved with commercial glues.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信