Tian-Hao Ma, Wei Zhang, Le Chang, Jian-Ping Zhao, Chang-Yu Zhou
{"title":"Study of Hybrid Machine Learning Multiaxial Low-Cycle Fatigue Life Prediction Model of CP-Ti","authors":"Tian-Hao Ma, Wei Zhang, Le Chang, Jian-Ping Zhao, Chang-Yu Zhou","doi":"10.1111/ffe.14604","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Symmetric and asymmetric multiaxial low-cycle fatigue tests were conducted on commercially pure titanium under different control modes and multiaxial strain/stress ratios to establish a reliable hybrid physics and data-driven method. Optimized analysis formula–based models are proposed to provide reliable physical information first. Based on the dataset enhanced by the nonlinear variational autoencoder method, a hybrid VAE-ANN model is established and trained, developed using the Pearson correlation coefficient analysis and Leaky ReLU activation function. Through a series of fatigue life prediction validations under both symmetric and asymmetric loading conditions, the VAE-ANN model demonstrates excellent prediction accuracy, broad generalization capability, and strong compatibility, achieving the lowest average absolute relative error of 6.76% under symmetric and 22.61% under asymmetric loading conditions.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2309-2324"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14604","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Symmetric and asymmetric multiaxial low-cycle fatigue tests were conducted on commercially pure titanium under different control modes and multiaxial strain/stress ratios to establish a reliable hybrid physics and data-driven method. Optimized analysis formula–based models are proposed to provide reliable physical information first. Based on the dataset enhanced by the nonlinear variational autoencoder method, a hybrid VAE-ANN model is established and trained, developed using the Pearson correlation coefficient analysis and Leaky ReLU activation function. Through a series of fatigue life prediction validations under both symmetric and asymmetric loading conditions, the VAE-ANN model demonstrates excellent prediction accuracy, broad generalization capability, and strong compatibility, achieving the lowest average absolute relative error of 6.76% under symmetric and 22.61% under asymmetric loading conditions.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.