Study of Supercooled Water Drop Impact on Icephobic Gradient Polymer Coatings

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gabriel Hernández Rodríguez, Mingyue Ding, Ilia V. Roisman, Jeanette Hussong, Anna Maria Coclite
{"title":"Study of Supercooled Water Drop Impact on Icephobic Gradient Polymer Coatings","authors":"Gabriel Hernández Rodríguez,&nbsp;Mingyue Ding,&nbsp;Ilia V. Roisman,&nbsp;Jeanette Hussong,&nbsp;Anna Maria Coclite","doi":"10.1002/admi.202400723","DOIUrl":null,"url":null,"abstract":"<p>Supercooled liquid water drops, with temperatures below freezing point, are common in high-altitude clouds. These drops, despite being in a metastable state, can remain liquid for extended periods if temperatures are above the homogeneous nucleation point. Impact of such liquid drops with a cold solid surface is one of the reasons for ice accretion, which in many cases can represent a safety hazard. The study of supercooled drop impact dynamics is key to developing materials that provide resistance against the formation and accumulation of ice. In this work, the impact of supercooled water drops on dry icephobic coatings based on gradient polymers deposited via initiated chemical vapor deposition (iCVD) under several conditions is analyzed. Experimental results show that coated surfaces potentially decrease the freezing probability upon impact. The gradient polymer surfaces with higher roughness and lower wettability do not increase the freezing probability upon impact but result in rebound and eventual roll off the surface, indicating that surface hydrophobic properties prevailed over the impact. The findings demonstrate the remarkable efficacy of gradient polymer coatings in inhibiting drop freezing, even under high wind velocities, and provide insights for the design of durable and effective anti-icing coatings across diverse applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400723","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercooled liquid water drops, with temperatures below freezing point, are common in high-altitude clouds. These drops, despite being in a metastable state, can remain liquid for extended periods if temperatures are above the homogeneous nucleation point. Impact of such liquid drops with a cold solid surface is one of the reasons for ice accretion, which in many cases can represent a safety hazard. The study of supercooled drop impact dynamics is key to developing materials that provide resistance against the formation and accumulation of ice. In this work, the impact of supercooled water drops on dry icephobic coatings based on gradient polymers deposited via initiated chemical vapor deposition (iCVD) under several conditions is analyzed. Experimental results show that coated surfaces potentially decrease the freezing probability upon impact. The gradient polymer surfaces with higher roughness and lower wettability do not increase the freezing probability upon impact but result in rebound and eventual roll off the surface, indicating that surface hydrophobic properties prevailed over the impact. The findings demonstrate the remarkable efficacy of gradient polymer coatings in inhibiting drop freezing, even under high wind velocities, and provide insights for the design of durable and effective anti-icing coatings across diverse applications.

Abstract Image

过冷水滴对疏冰梯度聚合物涂层影响的研究
温度低于冰点的过冷液态水在高空云层中很常见。尽管这些液滴处于亚稳态,但如果温度高于均匀成核点,它们可以长时间保持液体状态。这种液滴与冰冷的固体表面的碰撞是冰积聚的原因之一,这在许多情况下可能代表安全隐患。研究过冷液滴撞击动力学是开发抗冰形成和积聚材料的关键。本文分析了不同条件下过冷水滴对化学气相沉积(iCVD)制备的梯度聚合物干型疏冰涂层的影响。实验结果表明,涂层表面有可能降低撞击时的冻结概率。具有较高粗糙度和较低润湿性的梯度聚合物表面在撞击时不会增加冻结概率,但会导致反弹并最终滚出表面,这表明表面疏水性优于撞击。研究结果表明,即使在高风速下,梯度聚合物涂层也能显著抑制水滴冻结,这为设计耐用、有效的防冰涂层提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信