{"title":"Cyclic Mechanical Behavior, Damage-Coupled Constitutive Model, and Remaining Life Prediction Model of QCr0.8 at High Temperature","authors":"Jundong Wang, Jiaheng Yu, Zhixun Wen, Xiangqian Xu, Yanqi Shi, Zhufeng Yue","doi":"10.1111/ffe.14611","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The low cycle fatigue (LCF) behavior including the fatigue life, hysteresis loop, and damage process of QCr0.8 at 350°C and 500°C was studied. A viscoplastic damage-coupled unified creep-plasticity constitutive model was developed to simulate the cyclical mechanical behavior and damage of QCr0.8 with the same set of parameters at identical temperatures. Meanwhile, LCF damage measurement methods based on changes in elastic modulus and evolution of peak stress were compared. To assess the remaining life of QCr0.8 after a certain period of service, a remaining life prediction model based on the entropy increase theory within the unified thermodynamic framework was proposed. The results show that the prediction results are in good agreement with experimental data.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2176-2190"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The low cycle fatigue (LCF) behavior including the fatigue life, hysteresis loop, and damage process of QCr0.8 at 350°C and 500°C was studied. A viscoplastic damage-coupled unified creep-plasticity constitutive model was developed to simulate the cyclical mechanical behavior and damage of QCr0.8 with the same set of parameters at identical temperatures. Meanwhile, LCF damage measurement methods based on changes in elastic modulus and evolution of peak stress were compared. To assess the remaining life of QCr0.8 after a certain period of service, a remaining life prediction model based on the entropy increase theory within the unified thermodynamic framework was proposed. The results show that the prediction results are in good agreement with experimental data.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.