Inhibition of Biofilm Formation on Orthopedic Implants Based on Spider Silk Coatings Increases Survival of Galleria mellonella

IF 4.4 Q2 ENGINEERING, BIOMEDICAL
Supun Mohotti, Gopala K. Mannala, Hendrik Bargel, Volker Alt, Thomas Scheibel
{"title":"Inhibition of Biofilm Formation on Orthopedic Implants Based on Spider Silk Coatings Increases Survival of Galleria mellonella","authors":"Supun Mohotti,&nbsp;Gopala K. Mannala,&nbsp;Hendrik Bargel,&nbsp;Volker Alt,&nbsp;Thomas Scheibel","doi":"10.1002/anbr.202400160","DOIUrl":null,"url":null,"abstract":"<p>\nThe microbial repellence of some spider silk-based materials makes them interesting candidates for biomedical applications. This study investigates the microbial repellent properties of recombinant spider silk coatings on orthopedic metal implants, specifically targeting the prevention of biofilm-related implant infections caused by multidrug-resistant bacteria such as <i>Staphylococcus aureus</i>. Utilizing <i>Galleria mellonella</i> as an in vivo model, stainless steel and titanium implants coated with films made of three different recombinant spider silk proteins are analyzed concerning biofilm formation and its impact on animal survival. Amongst the tested spider silk variants, the polyanionic eADF4(C16) demonstrates superior bacterial-repellent properties and improved larval survivability. Scanning electron microscopy analysis reveals reduced bacterial presence on eADF4(C16)-coated wires compared to uncoated controls, correlating with survival data. Based on the results, the potential of recombinant spider silk coatings to enhance implant functionality and longevity is highlighted, presenting a novel solution to combat biofilm-related implant infections and address the growing threat of antimicrobial resistance. Furthermore, employing <i>Galleria mellonella</i> as an in vivo model underscores a commitment to ethical research practices in studying biofilm infections.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202400160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The microbial repellence of some spider silk-based materials makes them interesting candidates for biomedical applications. This study investigates the microbial repellent properties of recombinant spider silk coatings on orthopedic metal implants, specifically targeting the prevention of biofilm-related implant infections caused by multidrug-resistant bacteria such as Staphylococcus aureus. Utilizing Galleria mellonella as an in vivo model, stainless steel and titanium implants coated with films made of three different recombinant spider silk proteins are analyzed concerning biofilm formation and its impact on animal survival. Amongst the tested spider silk variants, the polyanionic eADF4(C16) demonstrates superior bacterial-repellent properties and improved larval survivability. Scanning electron microscopy analysis reveals reduced bacterial presence on eADF4(C16)-coated wires compared to uncoated controls, correlating with survival data. Based on the results, the potential of recombinant spider silk coatings to enhance implant functionality and longevity is highlighted, presenting a novel solution to combat biofilm-related implant infections and address the growing threat of antimicrobial resistance. Furthermore, employing Galleria mellonella as an in vivo model underscores a commitment to ethical research practices in studying biofilm infections.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

抑制基于蜘蛛丝涂层的骨科植入物生物膜的形成可提高黑孢Galleria mellonella的存活率
一些蜘蛛丝基材料的微生物驱避性使它们成为生物医学应用的有趣候选者。本研究研究了重组蜘蛛丝涂层在骨科金属种植体上的微生物驱避特性,专门针对金黄色葡萄球菌等多重耐药细菌引起的生物膜相关种植体感染进行预防。以粗孔线虫为体内模型,对三种不同重组蜘蛛丝蛋白制成的膜包覆不锈钢和钛植入物的生物膜形成及其对动物生存的影响进行了分析。在测试的蜘蛛丝变体中,聚阴离子eADF4(C16)表现出优越的驱菌性能和提高的幼虫存活率。扫描电镜分析显示,与未涂覆eADF4(C16)的对照组相比,涂覆eADF4(C16)的导线上细菌的存在减少,这与存活数据相关。基于这些结果,重组蜘蛛丝涂层在增强种植体功能和寿命方面的潜力被强调,为对抗与生物膜相关的种植体感染和解决日益增长的抗生素耐药性威胁提供了一种新的解决方案。此外,采用千层杆菌作为体内模型强调了对研究生物膜感染的伦理研究实践的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信