Comparability of Fatigue Strength and Life Estimation of a CF-PEKK Composite Under Low and Ultrasonic Frequencies Using Time-Temperature-Based Approaches

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Aravind Premanand, Hanna Schimmelpfeng, Frank Balle
{"title":"Comparability of Fatigue Strength and Life Estimation of a CF-PEKK Composite Under Low and Ultrasonic Frequencies Using Time-Temperature-Based Approaches","authors":"Aravind Premanand,&nbsp;Hanna Schimmelpfeng,&nbsp;Frank Balle","doi":"10.1111/ffe.14608","DOIUrl":null,"url":null,"abstract":"<p>Predicting very high cycle fatigue (VHCF) life in composites is challenging due to the lengthy testing times required by traditional methods. Ensuring compatibility between VHCF and high cycle fatigue (HCF) data presents an additional challenge. This investigation examines CF-PEKK fatigue behavior under low and ultrasonic cyclic frequencies using a thermographic approach and the fracture fatigue entropy (FFE) concept. Constant-amplitude fatigue (CAF) and increasing-amplitude fatigue (IAF) tests were conducted, with self-heating behavior analyzed for different loading conditions. Heat dissipation rates from IAF experiments and fatigue data from three CAF experiments at 40 Hz and three at 20 kHz were used to calculate FFE values. Results showed that the self-heating response of CF-PEKK specimens helps achieve comparable fatigue data across frequencies, with consistent FFE ranges identified between HCF and VHCF regimes. This consistency highlights that FFE can provide reliable fatigue life estimation for composites.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2363-2380"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14608","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14608","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting very high cycle fatigue (VHCF) life in composites is challenging due to the lengthy testing times required by traditional methods. Ensuring compatibility between VHCF and high cycle fatigue (HCF) data presents an additional challenge. This investigation examines CF-PEKK fatigue behavior under low and ultrasonic cyclic frequencies using a thermographic approach and the fracture fatigue entropy (FFE) concept. Constant-amplitude fatigue (CAF) and increasing-amplitude fatigue (IAF) tests were conducted, with self-heating behavior analyzed for different loading conditions. Heat dissipation rates from IAF experiments and fatigue data from three CAF experiments at 40 Hz and three at 20 kHz were used to calculate FFE values. Results showed that the self-heating response of CF-PEKK specimens helps achieve comparable fatigue data across frequencies, with consistent FFE ranges identified between HCF and VHCF regimes. This consistency highlights that FFE can provide reliable fatigue life estimation for composites.

Abstract Image

基于时间-温度方法的低频和超声下CF-PEKK复合材料疲劳强度和寿命估算的可比性
由于传统方法需要较长的测试时间,因此预测复合材料的超高循环疲劳(VHCF)寿命极具挑战性。确保超高循环疲劳(VHCF)和高循环疲劳(HCF)数据之间的兼容性也是一项挑战。本研究采用热成像方法和断裂疲劳熵 (FFE) 概念,对 CF-PEKK 在低频和超声循环频率下的疲劳行为进行了研究。进行了恒幅疲劳(CAF)和增幅疲劳(IAF)试验,并对不同加载条件下的自热行为进行了分析。IAF 试验的散热率和三次 40 Hz 和三次 20 kHz CAF 试验的疲劳数据被用来计算 FFE 值。结果表明,CF-PEKK 试样的自热响应有助于获得不同频率下的可比疲劳数据,在 HCF 和 VHCF 状态下可确定一致的 FFE 范围。这种一致性表明,FFE 可以为复合材料提供可靠的疲劳寿命估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信