Jane A. E. Gruisen, Ilona M. Punt, Ryan Siskey, Pieter Emans, Aylvin Dias, Martijn Poeze, Alex K. Roth
{"title":"The In Vivo Biological Response to Intra-Articular Injected Polycarbonate Urethane Wear Debris Particles","authors":"Jane A. E. Gruisen, Ilona M. Punt, Ryan Siskey, Pieter Emans, Aylvin Dias, Martijn Poeze, Alex K. Roth","doi":"10.1002/jbm.b.35579","DOIUrl":null,"url":null,"abstract":"<p>Wear particles invariably form due to contact and friction between articulating surfaces in orthopedic prosthetic joint replacements. Polycarbonate urethane (PCU) has shown low wear rates and invoked minimal local biological response to wear debris in various orthopedic applications. However, controlled preclinical studies have not yet studied the biological response to PCU particles in synovial joints. This study aims to evaluate the biological response to mostly submicron-sized PCU wear particles in synovial joints in a rabbit model representing a worst-case scenario. PCU and ultra-high-molecular-weight-polyethene (UHMWPE) particles were generated in vitro, and particle characterization was performed using scanning electron microscopy (SEM) images. Fifteen New Zealand white rabbits, divided into three groups, received bilateral injections in the knee joint with 10 mg/mL PCU, UHMWPE particles, or saline (all 0.2 mL). After 3 months, the biological response in the joint was evaluated by histopathological reactivity scoring. The generated PCU and UHMWPE wear particles were mainly in the biologically active size range with an average equivalent circle diameter (ECD) of 0.31 μm (±0.48) and 6.99 μm (±16.32), respectively. There was a minimal to non-existing biological response (score ≤ 0.5) to PCU (0.5 ± 1.0), UHMWPE particles (0.6 ± 1.3) and saline (0.0 ± 0.0). Also, the wear particles did not disperse from the injection site. The results of this study support the use of PCU as a bearing surface in orthopedic prosthetic joint replacements by indicating that even in the likelihood that wear particles are generated, they are not likely to trigger a strong inflammatory response.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35579","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wear particles invariably form due to contact and friction between articulating surfaces in orthopedic prosthetic joint replacements. Polycarbonate urethane (PCU) has shown low wear rates and invoked minimal local biological response to wear debris in various orthopedic applications. However, controlled preclinical studies have not yet studied the biological response to PCU particles in synovial joints. This study aims to evaluate the biological response to mostly submicron-sized PCU wear particles in synovial joints in a rabbit model representing a worst-case scenario. PCU and ultra-high-molecular-weight-polyethene (UHMWPE) particles were generated in vitro, and particle characterization was performed using scanning electron microscopy (SEM) images. Fifteen New Zealand white rabbits, divided into three groups, received bilateral injections in the knee joint with 10 mg/mL PCU, UHMWPE particles, or saline (all 0.2 mL). After 3 months, the biological response in the joint was evaluated by histopathological reactivity scoring. The generated PCU and UHMWPE wear particles were mainly in the biologically active size range with an average equivalent circle diameter (ECD) of 0.31 μm (±0.48) and 6.99 μm (±16.32), respectively. There was a minimal to non-existing biological response (score ≤ 0.5) to PCU (0.5 ± 1.0), UHMWPE particles (0.6 ± 1.3) and saline (0.0 ± 0.0). Also, the wear particles did not disperse from the injection site. The results of this study support the use of PCU as a bearing surface in orthopedic prosthetic joint replacements by indicating that even in the likelihood that wear particles are generated, they are not likely to trigger a strong inflammatory response.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.