Diego A. de Aguiar, Hugo L. França, Cassio M. Oishi
{"title":"Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach","authors":"Diego A. de Aguiar, Hugo L. França, Cassio M. Oishi","doi":"10.1002/fld.5381","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 5","pages":"854-873"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5381","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.