In-situ construction of tubular core–shell noble-metal-free CMT@TiO2/ZnIn2S4 S-scheme heterojunction for superior photothermal-photocatalytic hydrogen evolution

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wen-Ning Yang, Jie Yang, Hua Yang, Lei Sun, Heng-Xiang Li, Da-Cheng Li, Jian-Min Dou, Xue-Gai Li, Gui-Dong Cao
{"title":"In-situ construction of tubular core–shell noble-metal-free CMT@TiO2/ZnIn2S4 S-scheme heterojunction for superior photothermal-photocatalytic hydrogen evolution","authors":"Wen-Ning Yang,&nbsp;Jie Yang,&nbsp;Hua Yang,&nbsp;Lei Sun,&nbsp;Heng-Xiang Li,&nbsp;Da-Cheng Li,&nbsp;Jian-Min Dou,&nbsp;Xue-Gai Li,&nbsp;Gui-Dong Cao","doi":"10.1007/s12598-024-03060-6","DOIUrl":null,"url":null,"abstract":"<div><p>Developing efficient and stable photocatalysts for hydrogen generation still remains a huge challenge. Herein, we adopted Cynanchum fibers as a carbon source and substrate to construct a ternary hollow core–shell carbon microtubes@TiO<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> (denoted as CMT@TiO<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub>) for photothermal-assisted photocatalytic hydrogen evolution (PHE). For the catalyst system, ZnIn<sub>2</sub>S<sub>4</sub> is the main visible light absorber, TiO<sub>2</sub> is introduced to form a heterojunction with ZnIn<sub>2</sub>S<sub>4</sub> to facilitate the separation of photogenerated carriers, and hollow CMT derived from Cynanchum fibers serves as a conductive scaffold and a photothermal core to elevate the surface temperature of the localized reaction system. Benefiting from the rationally designed multicomponents and microstructures, the photocatalyst proposed enhanced PHE activity of 9.71 mmol·g<sup>−1</sup>·h<sup>−1</sup>, which was 30.3, 2.7 and 1.5 times higher than those of binary CMT@TiO<sub>2</sub>, pristine ZnIn<sub>2</sub>S<sub>4</sub> and TiO<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> composite, respectively. The outperformed PHE activity of CMT@TiO<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> could be ascribed to the synergy of the formation of intimate heterointerface, the CMT-induced photothermal effect and the hierarchical core–shell architecture. This work provides a promising approach for constructing efficient and durable photocatalysts for H<sub>2</sub> evolution.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 4","pages":"2474 - 2488"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03060-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and stable photocatalysts for hydrogen generation still remains a huge challenge. Herein, we adopted Cynanchum fibers as a carbon source and substrate to construct a ternary hollow core–shell carbon microtubes@TiO2/ZnIn2S4 (denoted as CMT@TiO2/ZnIn2S4) for photothermal-assisted photocatalytic hydrogen evolution (PHE). For the catalyst system, ZnIn2S4 is the main visible light absorber, TiO2 is introduced to form a heterojunction with ZnIn2S4 to facilitate the separation of photogenerated carriers, and hollow CMT derived from Cynanchum fibers serves as a conductive scaffold and a photothermal core to elevate the surface temperature of the localized reaction system. Benefiting from the rationally designed multicomponents and microstructures, the photocatalyst proposed enhanced PHE activity of 9.71 mmol·g−1·h−1, which was 30.3, 2.7 and 1.5 times higher than those of binary CMT@TiO2, pristine ZnIn2S4 and TiO2/ZnIn2S4 composite, respectively. The outperformed PHE activity of CMT@TiO2/ZnIn2S4 could be ascribed to the synergy of the formation of intimate heterointerface, the CMT-induced photothermal effect and the hierarchical core–shell architecture. This work provides a promising approach for constructing efficient and durable photocatalysts for H2 evolution.

Graphical abstract

原位构建无贵金属的管状核-壳异质结CMT@TiO2/ZnIn2S4 S-scheme,具有优异的光热-光催化析氢性能
开发高效、稳定的制氢光催化剂仍然是一个巨大的挑战。本文以Cynanchum纤维为碳源和底物,构建了用于光热辅助光催化析氢(PHE)的三元空心核壳碳microtubes@TiO2/ZnIn2S4(表示为CMT@TiO2/ZnIn2S4)。在催化剂体系中,ZnIn2S4是主要的可见光吸收剂,引入TiO2与ZnIn2S4形成异质结,促进光生载流子的分离,Cynanchum纤维衍生的空心CMT作为导电支架和光热核心,提高局部反应体系的表面温度。得益于合理设计的多组分和微观结构,光催化剂的PHE活性提高了9.71 mmol·g−1·h−1,分别是二元CMT@TiO2、原始ZnIn2S4和TiO2/ZnIn2S4复合材料的30.3倍、2.7倍和1.5倍。CMT@TiO2/ZnIn2S4具有优异的PHE活性,这可能是由于形成了亲密异质界面、cmt诱导的光热效应和层次化的核壳结构共同作用的结果。这项工作为构建高效、耐用的光催化剂提供了一条有前途的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信