Thermal Torsion Effect of Twisted Polymer Actuators

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiongjiong Hu, Lei Liu, Hao Liu, Dabiao Liu
{"title":"Thermal Torsion Effect of Twisted Polymer Actuators","authors":"Jiongjiong Hu,&nbsp;Lei Liu,&nbsp;Hao Liu,&nbsp;Dabiao Liu","doi":"10.1007/s10338-024-00547-8","DOIUrl":null,"url":null,"abstract":"<div><p>Twisted polymer artificial muscles activated by thermal heating represent a new class of soft actuators capable of generating torsional actuation. The thermal torsion effect, characterized by the reversible untwisting of twisted fibers as temperature increases due to greater radial than axial thermal expansion, is crucial to the actuation performance of these artificial muscles. This study explores the thermal torsion effect of polymer muscles made of twisted Nylon 6 fibers in experimental and theoretical aspects, focusing on the interplay between material properties and temperature. It is revealed that the thermal torsion effect enhances the actuation performance of the twisted polymer actuator while the thermal softening effect diminishes it. A thermal–mechanical model incorporating both the thermal torsion effect and thermal softening effect is used to predict the recovered torque of the twisted polymer actuators. An optimal bias angle and operating temperature are identified to maximize the recovered torque. Analysis of strain and stress distributions in the cross-section of the twisted polymer fiber shows that the outer layers of the fiber predominantly contribute to the torsional actuation. This work aids in the precise control and structural optimization of the thermally-activated twisted polymer actuators.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 2","pages":"320 - 330"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00547-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted polymer artificial muscles activated by thermal heating represent a new class of soft actuators capable of generating torsional actuation. The thermal torsion effect, characterized by the reversible untwisting of twisted fibers as temperature increases due to greater radial than axial thermal expansion, is crucial to the actuation performance of these artificial muscles. This study explores the thermal torsion effect of polymer muscles made of twisted Nylon 6 fibers in experimental and theoretical aspects, focusing on the interplay between material properties and temperature. It is revealed that the thermal torsion effect enhances the actuation performance of the twisted polymer actuator while the thermal softening effect diminishes it. A thermal–mechanical model incorporating both the thermal torsion effect and thermal softening effect is used to predict the recovered torque of the twisted polymer actuators. An optimal bias angle and operating temperature are identified to maximize the recovered torque. Analysis of strain and stress distributions in the cross-section of the twisted polymer fiber shows that the outer layers of the fiber predominantly contribute to the torsional actuation. This work aids in the precise control and structural optimization of the thermally-activated twisted polymer actuators.

扭曲聚合物致动器的热扭转效应
加热激活的扭曲聚合物人造肌肉是一类能够产生扭转驱动的新型软致动器。热扭转效应的特点是,由于径向热膨胀大于轴向热膨胀,当温度升高时,扭曲的纤维可逆解扭,这对这些人造肌肉的驱动性能至关重要。本研究从实验和理论两方面探讨了尼龙6纤维捻制聚合物肌肉的热扭转效应,重点研究了材料性能与温度的相互作用。结果表明,热扭转效应提高了扭曲聚合物作动器的致动性能,而热软化效应降低了其致动性能。采用结合热扭转效应和热软化效应的热-力学模型预测了扭转聚合物作动器的恢复扭矩。确定了最佳偏置角和工作温度,以最大限度地提高恢复扭矩。对扭曲聚合物纤维截面的应变和应力分布分析表明,纤维的外层对扭转驱动起主要作用。这项工作有助于热激活扭曲聚合物致动器的精确控制和结构优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信