Comprehensive Characterization of Novel Jute Fabrics with Musa Paradisiaca Leaf Agro-Waste Based Micro Cellulosic Fillers Reinforced Epoxy Composites For Lightweight Applications
M. Indra Reddy, Prabhu Sethuramalingam, Ranjeet Kumar Sahu
{"title":"Comprehensive Characterization of Novel Jute Fabrics with Musa Paradisiaca Leaf Agro-Waste Based Micro Cellulosic Fillers Reinforced Epoxy Composites For Lightweight Applications","authors":"M. Indra Reddy, Prabhu Sethuramalingam, Ranjeet Kumar Sahu","doi":"10.1007/s12221-025-00886-4","DOIUrl":null,"url":null,"abstract":"<div><p>For lightweight, sustainable, high-strength products, hybrid bio-epoxy composites materials were the most excellent choice for the production industry. The investigation proceeds in developing a four-stacked sequence jute-woven mats reinforced with epoxy composite and added with micro-cellulose fillers. The extraction of micro cellulose from Musa paradisiaca plant leaf (MPPL) was carried out through a series of processes, including alkali treatment, acid hydrolysis, bleaching, and slow pyrolysis. The composite was fabricated using the conventional hand lay-up method and compression molding. The microcellulose was added to the stacked composite at varying weight percentages (0, 2.5, 5, 7.5, and 10%). Thermo-mechanical and water intake characterization were investigated using ASTM. The findings revealed that incorporating 5% MPPL cellulose into the jute-stacked layer sequence resulted in improved hardness (95 HRRW), tensile modulus (3407.69 MPa), tensile strength (79.74 MPa), flexural modulus (2195.752 MPa), flexural strength (56.87 MPa), and crystallinity index (72.7%). However, a reduction in impact strength (23.27 kJ/m<sup>2</sup>) was noted compared to the unfilled composite. The higher thermal degradation (480 °C) behavior of the filler-reinforced composite makes them a suitable material for applications in high-temperature environments. Fractographical morphology was also investigated to reveal the bonding behavior, voids formations, agglomeration of fillers, and fracture behavior. Thus, this distinguishable composite characterization will aid the manufacturing industries in producing high-strength biodegradable materials.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1691 - 1703"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00886-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
For lightweight, sustainable, high-strength products, hybrid bio-epoxy composites materials were the most excellent choice for the production industry. The investigation proceeds in developing a four-stacked sequence jute-woven mats reinforced with epoxy composite and added with micro-cellulose fillers. The extraction of micro cellulose from Musa paradisiaca plant leaf (MPPL) was carried out through a series of processes, including alkali treatment, acid hydrolysis, bleaching, and slow pyrolysis. The composite was fabricated using the conventional hand lay-up method and compression molding. The microcellulose was added to the stacked composite at varying weight percentages (0, 2.5, 5, 7.5, and 10%). Thermo-mechanical and water intake characterization were investigated using ASTM. The findings revealed that incorporating 5% MPPL cellulose into the jute-stacked layer sequence resulted in improved hardness (95 HRRW), tensile modulus (3407.69 MPa), tensile strength (79.74 MPa), flexural modulus (2195.752 MPa), flexural strength (56.87 MPa), and crystallinity index (72.7%). However, a reduction in impact strength (23.27 kJ/m2) was noted compared to the unfilled composite. The higher thermal degradation (480 °C) behavior of the filler-reinforced composite makes them a suitable material for applications in high-temperature environments. Fractographical morphology was also investigated to reveal the bonding behavior, voids formations, agglomeration of fillers, and fracture behavior. Thus, this distinguishable composite characterization will aid the manufacturing industries in producing high-strength biodegradable materials.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers