The Li-Feng transformation of weighted adjacency matrices for graphs with degree-based edge-weights

IF 0.7 3区 数学 Q2 MATHEMATICS
Jing Gao, Xueliang Li, Ning Yang, Ruiling Zheng
{"title":"The Li-Feng transformation of weighted adjacency matrices for graphs with degree-based edge-weights","authors":"Jing Gao,&nbsp;Xueliang Li,&nbsp;Ning Yang,&nbsp;Ruiling Zheng","doi":"10.1016/j.disc.2025.114520","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, let <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> be the degree of a vertex <em>v</em>. Given a symmetric real function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, the weight of edge <em>uv</em> in graph <em>G</em> is equal to the value <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>)</mo></math></span>. The degree-based weighted adjacency matrix is defined as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which the <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>-entry is equal to <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>)</mo></math></span> if <em>uv</em> is an edge of <em>G</em> and 0 otherwise. In this paper, we consider the Li-Feng transformation and show that if a graph <em>G</em> contains two pendant paths on a common vertex, the uniform distribution of pendant paths increases the largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, when <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is increasing in <em>x</em> and the length of two pendant paths should be at least 2. We also consider the cycle version of Li-Feng transformation and show that if a graph <em>G</em> contains two pendant cycles on a common vertex, the uniform distribution of pendant cycles decreases the largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, when <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>&gt;</mo><mn>2</mn><mi>f</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. The purpose of this paper is to unify the study of the graph operation on the largest eigenvalue for the degree-based weighted adjacency matrix.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114520"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001281","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, let dv be the degree of a vertex v. Given a symmetric real function f(x,y), the weight of edge uv in graph G is equal to the value f(du,dv). The degree-based weighted adjacency matrix is defined as Af(G), in which the (u,v)-entry is equal to f(du,dv) if uv is an edge of G and 0 otherwise. In this paper, we consider the Li-Feng transformation and show that if a graph G contains two pendant paths on a common vertex, the uniform distribution of pendant paths increases the largest eigenvalue of Af(G), when f(x,y) is increasing in x and the length of two pendant paths should be at least 2. We also consider the cycle version of Li-Feng transformation and show that if a graph G contains two pendant cycles on a common vertex, the uniform distribution of pendant cycles decreases the largest eigenvalue of Af(G), when λ1(Af(G))>2f(2,2). The purpose of this paper is to unify the study of the graph operation on the largest eigenvalue for the degree-based weighted adjacency matrix.
基于边权重度的图的加权邻接矩阵的李丰变换
对于图G,设dv为顶点v的度数。给定一个对称实函数f(x,y),图G中边uv的权值等于f(du,dv)。基于度的加权邻接矩阵定义为Af(G),其中(u,v)项如果uv是G的边等于f(du,dv),否则等于0。本文考虑了Li-Feng变换,证明了如果一个图G在一个公共顶点上包含两条垂路径,当f(x,y)在x中递增时,垂路径的均匀分布增加了Af(G)的最大特征值,且两条垂路径的长度至少为2。我们还考虑了Li-Feng变换的循环版本,并证明了如果一个图G在一个公共顶点上包含两个垂环,当λ1(Af(G))>2f(2,2)时,垂环的均匀分布减小了Af(G)的最大特征值。本文的目的是统一研究基于度的加权邻接矩阵在最大特征值上的图运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信