Synthesis and evaluation of dysprosia doped zirconia electrolytes for microtubular solid oxide fuel cells

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Cigdem Timurkutluk , Esra Yildiz , Gulsah Germen Tutas , Semiha Onbilgin , Bora Timurkutluk
{"title":"Synthesis and evaluation of dysprosia doped zirconia electrolytes for microtubular solid oxide fuel cells","authors":"Cigdem Timurkutluk ,&nbsp;Esra Yildiz ,&nbsp;Gulsah Germen Tutas ,&nbsp;Semiha Onbilgin ,&nbsp;Bora Timurkutluk","doi":"10.1016/j.ijhydene.2025.03.433","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the synthesis, characterization, and electrochemical performance of dysprosia (Dy<sub>2</sub>O<sub>3</sub>)-stabilized zirconia (DySZ) as an electrolyte material for microtubular solid oxide fuel cells (SOFCs). The primary objective is to assess the effects of dysprosia doping on the stabilization of the cubic zirconia (ZrO<sub>2</sub>) phase and its impact on ionic conductivity and cell performance. In this regard, (Dy<sub>2</sub>O<sub>3</sub>)<sub>x</sub>(ZrO<sub>2</sub>)<sub>1-<em>x</em></sub> powders are synthesized using modified sol-gel method for 0.08 ≤ <em>x ≤</em> 0.12. X-ray diffraction (XRD) measurements reveal that the stabilization of the face-centered-cubic (<em>fcc</em>) ZrO<sub>2</sub> is observed at all doping ratios studied after calcining at 1200 °C, resulting in Dy<sub>2</sub>O<sub>3</sub> stabilized zirconia. The lattice parameter increases with Dy doping, consistent with the substitution of smaller Zr<sup>4+</sup> cations by larger Dy<sup>3+</sup> cations. The electrochemical performance tests indicate that the cell efficiency decreases with increasing dysprosia content beyond 8 mol %. A peak power density of 0.238 W/cm<sup>2</sup> is measured from 8 mol % Dy<sub>2</sub>O<sub>3</sub>-stabilized zirconia (8DySZ) electrolyte, whereas 12 mol % Dy<sub>2</sub>O<sub>3</sub>-stabilized zirconia (12DySZ) electrolyte achieves a lower power density of 0.166 W/cm<sup>2</sup> under identical conditions. This decline is attributed to the diminishing ionic conductivity with the dopant amount, which compromises the efficiency of the DySZ electrolyte. The impedance analysis further corroborates these findings, showing a rise in both ohmic and charge transfer resistances with increasing dysprosia content. Microstructural investigations are also carried out and the results are evaluated. Overall, this research highlights the potential of 8DySZ as a promising alternative to traditional yttria-stabilized zirconia (YSZ) electrolytes in SOFCs.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"124 ","pages":"Pages 153-163"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036031992501585X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the synthesis, characterization, and electrochemical performance of dysprosia (Dy2O3)-stabilized zirconia (DySZ) as an electrolyte material for microtubular solid oxide fuel cells (SOFCs). The primary objective is to assess the effects of dysprosia doping on the stabilization of the cubic zirconia (ZrO2) phase and its impact on ionic conductivity and cell performance. In this regard, (Dy2O3)x(ZrO2)1-x powders are synthesized using modified sol-gel method for 0.08 ≤ x ≤ 0.12. X-ray diffraction (XRD) measurements reveal that the stabilization of the face-centered-cubic (fcc) ZrO2 is observed at all doping ratios studied after calcining at 1200 °C, resulting in Dy2O3 stabilized zirconia. The lattice parameter increases with Dy doping, consistent with the substitution of smaller Zr4+ cations by larger Dy3+ cations. The electrochemical performance tests indicate that the cell efficiency decreases with increasing dysprosia content beyond 8 mol %. A peak power density of 0.238 W/cm2 is measured from 8 mol % Dy2O3-stabilized zirconia (8DySZ) electrolyte, whereas 12 mol % Dy2O3-stabilized zirconia (12DySZ) electrolyte achieves a lower power density of 0.166 W/cm2 under identical conditions. This decline is attributed to the diminishing ionic conductivity with the dopant amount, which compromises the efficiency of the DySZ electrolyte. The impedance analysis further corroborates these findings, showing a rise in both ohmic and charge transfer resistances with increasing dysprosia content. Microstructural investigations are also carried out and the results are evaluated. Overall, this research highlights the potential of 8DySZ as a promising alternative to traditional yttria-stabilized zirconia (YSZ) electrolytes in SOFCs.
微管固体氧化物燃料电池用掺杂氧化锆电解质的合成与评价
本研究旨在研究dys2o3稳定氧化锆(DySZ)作为微管固体氧化物燃料电池(SOFCs)电解质材料的合成、表征和电化学性能。主要目的是评估dysprosia掺杂对立方氧化锆(ZrO2)相稳定性的影响及其对离子电导率和电池性能的影响。为此,采用改性溶胶-凝胶法制备了(Dy2O3)x(ZrO2)1-x粉体,粒径为0.08≤x≤0.12。x射线衍射(XRD)测试表明,在1200℃煅烧后,在所有掺杂比下均观察到面心立方(fcc) ZrO2的稳定,得到了Dy2O3稳定的氧化锆。晶格参数随着Dy掺杂的增加而增加,这与较小的Zr4+阳离子被较大的Dy3+阳离子取代相一致。电化学性能测试表明,当厌氧含量超过8 mol %时,电池效率随其增加而下降。8mol % dy2o3稳定的氧化锆(8DySZ)电解质的峰值功率密度为0.238 W/cm2,而12mol % dy2o3稳定的氧化锆(12DySZ)电解质在相同条件下的峰值功率密度为0.166 W/cm2。这种下降归因于离子电导率随着掺杂量的减少而降低,这损害了DySZ电解质的效率。阻抗分析进一步证实了这些发现,显示欧姆电阻和电荷转移电阻都随着dysprosia含量的增加而增加。还进行了显微组织研究并对结果进行了评价。总的来说,这项研究强调了8DySZ作为sofc中传统钇稳定氧化锆(YSZ)电解质的替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信