A degree counting formula for Fuchsian ODEs with unitarizable monodromy

IF 1.7 2区 数学 Q1 MATHEMATICS
Hsin-Yuan Huang , Chang-Shou Lin
{"title":"A degree counting formula for Fuchsian ODEs with unitarizable monodromy","authors":"Hsin-Yuan Huang ,&nbsp;Chang-Shou Lin","doi":"10.1016/j.jfa.2025.110969","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the problem of whether the monodromy matrices of second-order Fuchsian ordinary differential equations (ODEs) are unitary. Let <em>k</em> be the number of non-integer differences of the local exponents at the singular points of the ODEs. By employing the Leray-Schauder degree formulas for the corresponding curvature equations, we show that under certain assumptions, the degree does not vanish when <span><math><mi>k</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>, which implies that the corresponding monodromy matrices are unitary. Among others, we show the form of the degree counting formulas. To the best of our knowledge, this is the first work that assigns the Leray-Schauder degree to Fuchsian ODEs from the perspective of the corresponding curvature equations.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110969"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500151X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problem of whether the monodromy matrices of second-order Fuchsian ordinary differential equations (ODEs) are unitary. Let k be the number of non-integer differences of the local exponents at the singular points of the ODEs. By employing the Leray-Schauder degree formulas for the corresponding curvature equations, we show that under certain assumptions, the degree does not vanish when k=3,4,5, which implies that the corresponding monodromy matrices are unitary. Among others, we show the form of the degree counting formulas. To the best of our knowledge, this is the first work that assigns the Leray-Schauder degree to Fuchsian ODEs from the perspective of the corresponding curvature equations.
具有可单元化单romy 的富奇异 ODE 的度数计算公式
本文研究了二阶Fuchsian常微分方程的单矩阵是否酉的问题。设k为ode的奇异点处的局部指数的非整数差的个数。利用相应曲率方程的Leray-Schauder度公式,证明了在一定的假设条件下,当k=3,4,5时,该度不消失,这意味着相应的单矩阵是酉的。其中,我们展示了次数计数公式的形式。据我们所知,这是第一个从相应曲率方程的角度赋予Fuchsian ode Leray-Schauder度的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信