Rong Zhou , Liying Zhang , Beibei Li , Jingtao Xiao , Yiheng Xing , Chang Chen , Yuecheng Shen , Hao Shen , Deng Pan , Hongxing Xu
{"title":"Harnessing evanescent photoacoustic waves for multi-domain imaging","authors":"Rong Zhou , Liying Zhang , Beibei Li , Jingtao Xiao , Yiheng Xing , Chang Chen , Yuecheng Shen , Hao Shen , Deng Pan , Hongxing Xu","doi":"10.1016/j.pacs.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Photoacoustic microscopy (PAM) offers a non-invasive imaging method that overcomes the limitations of light scattering in biological tissues by visualizing optical contrast through the detection of photo-generated acoustic signals. While optical microscopy has significantly advanced through the exploration of optical evanescent waves, the potential of evanescent photoacoustic (PA) waves in PAM remains largely unexplored. In this work, we demonstrate the generation and detection of evanescent PA waves in PAM by positioning the sample near an interface, which directs these waves into the far-field beyond the supercritical angle (SA). These SA-PA signals exhibit distinct characteristics, including dependence of intensity on the source depths and symmetry in far-field angular patterns. Leveraging these features, we develop a proof-of-concept for supercritical angle photoacoustic microscopy (SA-PAM), which utilizes evanescent PA waves to enable new PAM functionalities, such as surface topography reconstruction and edge detection. This approach highlights the role of acoustic near-field exploration in advancing PA technology.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"43 ","pages":"Article 100719"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000424","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic microscopy (PAM) offers a non-invasive imaging method that overcomes the limitations of light scattering in biological tissues by visualizing optical contrast through the detection of photo-generated acoustic signals. While optical microscopy has significantly advanced through the exploration of optical evanescent waves, the potential of evanescent photoacoustic (PA) waves in PAM remains largely unexplored. In this work, we demonstrate the generation and detection of evanescent PA waves in PAM by positioning the sample near an interface, which directs these waves into the far-field beyond the supercritical angle (SA). These SA-PA signals exhibit distinct characteristics, including dependence of intensity on the source depths and symmetry in far-field angular patterns. Leveraging these features, we develop a proof-of-concept for supercritical angle photoacoustic microscopy (SA-PAM), which utilizes evanescent PA waves to enable new PAM functionalities, such as surface topography reconstruction and edge detection. This approach highlights the role of acoustic near-field exploration in advancing PA technology.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.