{"title":"An energy-angular momentum phase function for rubble pile asteroids","authors":"D.J. Scheeres","doi":"10.1016/j.icarus.2025.116563","DOIUrl":null,"url":null,"abstract":"<div><div>This work analyzes the energetics of asteroid rubble piles in order to understand what asteroid morphologies should naturally arise from their formation and evolution process. In doing this, a phase diagram is developed that maps out the range of final minimum energy states that a collapsing gravitational aggregate can achieve as a function of total angular momentum and mass distribution. This is developed assuming properties associated with rubble pile asteroids, and can provide insight into the formation and subsequent evolution of contact binaries and orbital binaries in the solar system as an outcome of catastrophic disruptions. The system angular momentum is used as an independent parameter, combined with resulting minimum energy configurations as a simple function of mass morphology of the final system. The configuration of systems with an energy boosted above the minimum energy state are also considered. This paper considers an ideal case, but outlines general results that can be continued for more precise models of distributed granular media modeled using continuum models or using discrete element models.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"436 ","pages":"Article 116563"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work analyzes the energetics of asteroid rubble piles in order to understand what asteroid morphologies should naturally arise from their formation and evolution process. In doing this, a phase diagram is developed that maps out the range of final minimum energy states that a collapsing gravitational aggregate can achieve as a function of total angular momentum and mass distribution. This is developed assuming properties associated with rubble pile asteroids, and can provide insight into the formation and subsequent evolution of contact binaries and orbital binaries in the solar system as an outcome of catastrophic disruptions. The system angular momentum is used as an independent parameter, combined with resulting minimum energy configurations as a simple function of mass morphology of the final system. The configuration of systems with an energy boosted above the minimum energy state are also considered. This paper considers an ideal case, but outlines general results that can be continued for more precise models of distributed granular media modeled using continuum models or using discrete element models.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.