{"title":"New hyper-crosslinked polymers for enhanced CO2 adsorption: Synthesis and characterization","authors":"Kutalmis Gokkus","doi":"10.1016/j.scp.2025.102015","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, new hyper-crosslinked polymers (HCPs) were synthesized with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and <em>p</em>-naphtholbenzeine (NB) with different ratios of 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) through the Fridel-Crafts (FC) method. The polymers were thoroughly characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and x-ray diffraction (XRD) confirming the successful synthesis of HCP-PTCDAs and hyper crosslinked p-naphtholbenzein polymers (HCP-NBs). BET analysis revealed that the maximum surface areas of HCP-PTCDA and HCP-NB were 962 m<sup>2</sup> g<sup>−1</sup> and 665.4 m<sup>2</sup> g<sup>−1</sup>, respectively. The maximum pore volumes of HCP-PTCDA and HCP-NB were 1.26 cm<sup>3</sup> g<sup>−1</sup> and 1.90 cm<sup>3</sup> g<sup>−1</sup>, respectively. The enhanced surface area and pore volume of HCP-PTCDAs were attributed to the lack of conformational changes in PTCDA during synthesis. The maximum CO<sub>2</sub> adsorption capacities of the two polymers were obtained with HCP-PTCDA/20 and HCP-NB/5 (at 273 K and 1 bar: 2.75 mmol g<sup>−1</sup> and 3.28 mmol g<sup>−1</sup>, respectively). Although the surface area of HCP-NB/5 was three times lower than HCP-PTCDA/20, it showed higher CO<sub>2</sub> adsorption performance. Accordingly, these results revealed that pore volume and size distribution were one of the most determining parameters in CO<sub>2</sub> adsorption. Compared with the literature, the improved CO<sub>2</sub> adsorption performance, especially that of HCP-NB/5, showed that these polymers had relatively high potential.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"45 ","pages":"Article 102015"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554125001135","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, new hyper-crosslinked polymers (HCPs) were synthesized with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and p-naphtholbenzeine (NB) with different ratios of 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) through the Fridel-Crafts (FC) method. The polymers were thoroughly characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and x-ray diffraction (XRD) confirming the successful synthesis of HCP-PTCDAs and hyper crosslinked p-naphtholbenzein polymers (HCP-NBs). BET analysis revealed that the maximum surface areas of HCP-PTCDA and HCP-NB were 962 m2 g−1 and 665.4 m2 g−1, respectively. The maximum pore volumes of HCP-PTCDA and HCP-NB were 1.26 cm3 g−1 and 1.90 cm3 g−1, respectively. The enhanced surface area and pore volume of HCP-PTCDAs were attributed to the lack of conformational changes in PTCDA during synthesis. The maximum CO2 adsorption capacities of the two polymers were obtained with HCP-PTCDA/20 and HCP-NB/5 (at 273 K and 1 bar: 2.75 mmol g−1 and 3.28 mmol g−1, respectively). Although the surface area of HCP-NB/5 was three times lower than HCP-PTCDA/20, it showed higher CO2 adsorption performance. Accordingly, these results revealed that pore volume and size distribution were one of the most determining parameters in CO2 adsorption. Compared with the literature, the improved CO2 adsorption performance, especially that of HCP-NB/5, showed that these polymers had relatively high potential.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.