{"title":"On the combinatorial structure and algebraic characterizations of distance-regular digraphs","authors":"Giusy Monzillo , Safet Penjić","doi":"10.1016/j.disc.2025.114512","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> denote a simple strongly connected digraph with vertex set <em>X</em>, diameter <em>D</em>, and let <span><math><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>A</mi><mo>:</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>}</mo></math></span> denote the set of distance-<em>i</em> matrices of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote a partition of <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, where <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>|</mo><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>}</mo></math></span> <span><math><mo>(</mo><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi><mo>)</mo></math></span>. In the literature, such a digraph Γ is said to be <em>distance-regular</em> if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><mo>)</mo></math></span> is a commutative association scheme. In this paper, we provide a combinatorial definition of a distance-regular digraph in terms of equitable partitions. From this definition, we rediscover all well-known algebraic characterizations of such digraphs, including the above one. We also give several new characterizations, and one of them is the spectral excess theorem for distance-regular digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114512"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote a simple strongly connected digraph with vertex set X, diameter D, and let denote the set of distance-i matrices of Γ. Let denote a partition of , where . In the literature, such a digraph Γ is said to be distance-regular if is a commutative association scheme. In this paper, we provide a combinatorial definition of a distance-regular digraph in terms of equitable partitions. From this definition, we rediscover all well-known algebraic characterizations of such digraphs, including the above one. We also give several new characterizations, and one of them is the spectral excess theorem for distance-regular digraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.