On the combinatorial structure and algebraic characterizations of distance-regular digraphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Giusy Monzillo , Safet Penjić
{"title":"On the combinatorial structure and algebraic characterizations of distance-regular digraphs","authors":"Giusy Monzillo ,&nbsp;Safet Penjić","doi":"10.1016/j.disc.2025.114512","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> denote a simple strongly connected digraph with vertex set <em>X</em>, diameter <em>D</em>, and let <span><math><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>A</mi><mo>:</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>}</mo></math></span> denote the set of distance-<em>i</em> matrices of Γ. Let <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> denote a partition of <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, where <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>|</mo><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>}</mo></math></span> <span><math><mo>(</mo><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>D</mi><mo>)</mo></math></span>. In the literature, such a digraph Γ is said to be <em>distance-regular</em> if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>D</mi></mrow></msubsup><mo>)</mo></math></span> is a commutative association scheme. In this paper, we provide a combinatorial definition of a distance-regular digraph in terms of equitable partitions. From this definition, we rediscover all well-known algebraic characterizations of such digraphs, including the above one. We also give several new characterizations, and one of them is the spectral excess theorem for distance-regular digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114512"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Γ=Γ(A) denote a simple strongly connected digraph with vertex set X, diameter D, and let {A0,A:=A1,A2,,AD} denote the set of distance-i matrices of Γ. Let {Ri}i=0D denote a partition of X×X, where Ri={(x,y)X×X|(Ai)xy=1} (0iD). In the literature, such a digraph Γ is said to be distance-regular if (X,{Ri}i=0D) is a commutative association scheme. In this paper, we provide a combinatorial definition of a distance-regular digraph in terms of equitable partitions. From this definition, we rediscover all well-known algebraic characterizations of such digraphs, including the above one. We also give several new characterizations, and one of them is the spectral excess theorem for distance-regular digraphs.
距离正则有向图的组合结构及其代数表征
设Γ=Γ(A)表示顶点集X,直径D的简单强连通有向图,设{A0,A:=A1,A2,…,AD}表示Γ的距离i矩阵集。设{Ri}i=0D表示X×X的一个分区,其中Ri={(x,y)∈X×X|(Ai)xy=1}(0≤i≤D)。在文献中,如果(X,{Ri}i=0D)是可交换关联方案,则称有向图Γ是距离正则的。在本文中,我们给出了距离正则有向图的一个组合定义。从这个定义中,我们重新发现了所有已知的有向图的代数刻画,包括上面的有向图。我们还给出了几个新的刻画,其中一个是距离正则有向图的谱过剩定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信