ToIκB and ToIKK genes from golden pompano (Trachinotus ovatus): Molecular characterization, expression, and association with tolerance to Streptococcus agalactiae infection

IF 2.7 3区 农林科学 Q1 FISHERIES
Jie Gao , Ming-Jian Liu , Jin-Min Pan , Hua-Yang Guo , Bao-Suo Liu , Ke-Cheng Zhu , Nan Zhang , Dian-Chang Zhang
{"title":"ToIκB and ToIKK genes from golden pompano (Trachinotus ovatus): Molecular characterization, expression, and association with tolerance to Streptococcus agalactiae infection","authors":"Jie Gao ,&nbsp;Ming-Jian Liu ,&nbsp;Jin-Min Pan ,&nbsp;Hua-Yang Guo ,&nbsp;Bao-Suo Liu ,&nbsp;Ke-Cheng Zhu ,&nbsp;Nan Zhang ,&nbsp;Dian-Chang Zhang","doi":"10.1016/j.dci.2025.105369","DOIUrl":null,"url":null,"abstract":"<div><div>Effective disease management is crucial for sustainable aquaculture, particularly for economically important species like golden pompano (<em>Trachinotus ovatus</em>). <em>Streptococcus agalactiae</em> represents a major threat to this species, leading to severe health issues and significant economic losses. Understanding the immune mechanisms involved is essential to address this challenge. The <em>IκB</em> and <em>IKK</em> genes are known to be key regulators of immune responses, playing pivotal roles in modulating inflammatory pathways during infections. However, their specific roles in golden pompano immunity are not well characterized. In this study, we used bioinformatics analysis and tissue-specific expression profiling to investigate the roles of <em>IκB</em> and <em>IKK</em> genes in golden pompano during bacterial infection. The results demonstrated that <em>ToIKK</em> was significantly upregulated during the early stages of infection, indicating rapid immune activation, while <em>ToIκB</em> showed an initial decrease followed by recovery, suggesting its involvement in inflammation modulation. These genes were found to regulate the NF-κB signaling pathway, which is crucial for coordinating the immune response to bacterial infection. This research provides valuable insights into the molecular basis of golden pompano immune response against <em>S. agalactiae</em>, offering a foundation for developing targeted anti-infection strategies and improving disease resistance and health management practices in aquaculture.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"166 ","pages":"Article 105369"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X25000588","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective disease management is crucial for sustainable aquaculture, particularly for economically important species like golden pompano (Trachinotus ovatus). Streptococcus agalactiae represents a major threat to this species, leading to severe health issues and significant economic losses. Understanding the immune mechanisms involved is essential to address this challenge. The IκB and IKK genes are known to be key regulators of immune responses, playing pivotal roles in modulating inflammatory pathways during infections. However, their specific roles in golden pompano immunity are not well characterized. In this study, we used bioinformatics analysis and tissue-specific expression profiling to investigate the roles of IκB and IKK genes in golden pompano during bacterial infection. The results demonstrated that ToIKK was significantly upregulated during the early stages of infection, indicating rapid immune activation, while ToIκB showed an initial decrease followed by recovery, suggesting its involvement in inflammation modulation. These genes were found to regulate the NF-κB signaling pathway, which is crucial for coordinating the immune response to bacterial infection. This research provides valuable insights into the molecular basis of golden pompano immune response against S. agalactiae, offering a foundation for developing targeted anti-infection strategies and improving disease resistance and health management practices in aquaculture.
卵形金鲳鱼ToIκB和ToIKK基因的分子特征、表达及其与无乳链球菌感染耐受性的关系
有效的疾病管理对可持续水产养殖至关重要,特别是对金鲳鱼(Trachinotus ovatus)等经济上重要的物种。无乳链球菌是对这一物种的主要威胁,导致严重的健康问题和重大的经济损失。了解相关的免疫机制对于应对这一挑战至关重要。已知IκB和IKK基因是免疫反应的关键调节因子,在感染期间调节炎症通路中起关键作用。然而,它们在金鲳鱼免疫中的具体作用尚未很好地表征。本研究利用生物信息学分析和组织特异性表达谱研究了i - κ b和IKK基因在金鲳鱼细菌感染过程中的作用。结果表明,ToIKK在感染早期显著上调,表明免疫激活迅速,而ToIκB则表现出最初的降低后恢复,提示其参与炎症调节。这些基因被发现调节NF-κB信号通路,这对于协调细菌感染的免疫反应至关重要。本研究为金鲳鱼对无乳链球菌免疫应答的分子基础提供了有价值的见解,为制定针对性的抗感染策略、提高水产养殖的抗病能力和健康管理实践提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
6.90%
发文量
206
审稿时长
49 days
期刊介绍: Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信