Multi-modal travel route planning considering environmental preference under uncertainties: A distributionally robust optimization approach

IF 8.3 1区 工程技术 Q1 ECONOMICS
Xiangting Wang , Ying Lv , Huijun Sun , Xingrong Wang , Chuang Zhu
{"title":"Multi-modal travel route planning considering environmental preference under uncertainties: A distributionally robust optimization approach","authors":"Xiangting Wang ,&nbsp;Ying Lv ,&nbsp;Huijun Sun ,&nbsp;Xingrong Wang ,&nbsp;Chuang Zhu","doi":"10.1016/j.tre.2025.104097","DOIUrl":null,"url":null,"abstract":"<div><div>MaaS (Mobility as a Service) is the main trend in future transportation development. From the user perspective, it is primarily manifested as a shift in travel behavior, transitioning from reliance on single modes, such as private cars, to a mixed mode of various transportation options. In order to facilitate providing door-to-door services for travelers, this paper proposes a user-centric route planning approach under a new multi-modal framework, which it considers five travel modes, including bus, metro, car-hailing, as well as bike-sharing and walking that effectively addresses the last mile problem. Given the diverse travel objectives among travelers, this paper integrates travel time, cost, comfort, and green travel awareness into the objective function. Moreover, a multi-modal network travel route optimization model is established to generate route planning that aligns with traveler’s preferences. To address the challenges of multiple time uncertainties and incomplete distribution information resulting from problems such as road congestion and uneven distribution of bike-sharing and car-hailing during a trip, this paper proposes a distributionally robust optimization model to describe the uncertainties in two dimensions of the objective function. A generalized interval-valued trapezoidal possibility distribution is used to describe the time for finding a bike-sharing or for waiting a car-hailing service. The robust objective function and constraints are equivalently formulated as a deterministic model. The distributionally robust optimization model for uncertain travel times of buses and car-hailing services is demonstrated to be semi-infinite but can be safely and equivalently approximated under the Gaussian perturbations ambiguity set. Through comparative analyses with the traditional robust optimization method using experimental cases, the proposed distributionally robust optimization model exhibits superior performance. In addition, sensitivity analyzes are conducted on the relevant factors that influence travelers’ reduction in carbon emissions after the implementation of carbon incentive measures. The results demonstrate the effectiveness of the incentives introduced, which provides valuable information for the government to improve various incentive measures aimed at promoting low-carbon travel among travelers.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"198 ","pages":"Article 104097"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525001383","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

MaaS (Mobility as a Service) is the main trend in future transportation development. From the user perspective, it is primarily manifested as a shift in travel behavior, transitioning from reliance on single modes, such as private cars, to a mixed mode of various transportation options. In order to facilitate providing door-to-door services for travelers, this paper proposes a user-centric route planning approach under a new multi-modal framework, which it considers five travel modes, including bus, metro, car-hailing, as well as bike-sharing and walking that effectively addresses the last mile problem. Given the diverse travel objectives among travelers, this paper integrates travel time, cost, comfort, and green travel awareness into the objective function. Moreover, a multi-modal network travel route optimization model is established to generate route planning that aligns with traveler’s preferences. To address the challenges of multiple time uncertainties and incomplete distribution information resulting from problems such as road congestion and uneven distribution of bike-sharing and car-hailing during a trip, this paper proposes a distributionally robust optimization model to describe the uncertainties in two dimensions of the objective function. A generalized interval-valued trapezoidal possibility distribution is used to describe the time for finding a bike-sharing or for waiting a car-hailing service. The robust objective function and constraints are equivalently formulated as a deterministic model. The distributionally robust optimization model for uncertain travel times of buses and car-hailing services is demonstrated to be semi-infinite but can be safely and equivalently approximated under the Gaussian perturbations ambiguity set. Through comparative analyses with the traditional robust optimization method using experimental cases, the proposed distributionally robust optimization model exhibits superior performance. In addition, sensitivity analyzes are conducted on the relevant factors that influence travelers’ reduction in carbon emissions after the implementation of carbon incentive measures. The results demonstrate the effectiveness of the incentives introduced, which provides valuable information for the government to improve various incentive measures aimed at promoting low-carbon travel among travelers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信