{"title":"Direct hybridization and bioinformatics analysis of circulating microRNAs in patients with Alzheimer’s disease under intravenous trehalose treatment","authors":"Shabnam Radbakhsh , Diana Marisol Abrego-Guandique , Tiziana Bacchetti , Seyed Hamid Aghaee-Bakhtiari , Ali Mahmoudi , Ali Akhonpour Manteghi , Mohammad Javad Bazyari , Erika Cione , Gianna Ferretti , Amirhossein Sahebkar","doi":"10.1016/j.brainres.2025.149607","DOIUrl":null,"url":null,"abstract":"<div><div>Trehalose has been proposed as a possible therapeutic option for attenuating the neuropathological changes associated with neurodegeneration, including Alzheimer’s disease (AD). The administration of trehalose in human and murine models was linked to restoring antioxidant status, decreasing lipoperoxidation, and alleviating neuroinflammation. This latter biochemical mechanism was associated with the upregulation of specific brain-enriched microRNAs (miRNA). Herein, using a direct hybridization approach, we evaluate trehalose intravenous treatment in AD patients, conducting a phase two clinical trial (IRCT20130829014521N15) examining the alteration of microRNA profiles before and after the treatment. Twenty patients were recruited and randomly assigned to two groups: the intervention group received 15 g/week of intravenous trehalose. The control group received placebo in the form of normal saline. The period chosen was 12 weeks. Blood samples were obtained at the beginning and end of the study. Circulating microRNAs expression data between the placebo and treatment groups were assessed using microarray analysis. Subsequently, differentially expressed (DE) miRNAs specific to the trehalose-treated group were identified, and their gene targets were determined by bioinformatics-based approaches. The analysis of DE miRNAs pointed out modulation in unique miRNAs between treatment and placebo groups. Specifically, hsa-miR-1268a, −3605-3p, −555, and −6511a-3p were significantly downregulated, while hsa-miR-324-3p and −539-5p showed significant upregulation. Of the 147 overlapped validated genes identified in the bioinformatics analysis, several are related to autophagy, protein aggregation, oxidative stress, and inflammation. KEGG enrichment pathways reveal regulation of actin cytoskeleton, axon guidance, and neurotrophin signaling pathways. The results identify significant modulation in unique miRNAs in AD patients under trehalose. These findings suggest the potential utility of these microRNAs as biomarkers for trehalose pharmacological monitoring in AD.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1857 ","pages":"Article 149607"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325001660","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Trehalose has been proposed as a possible therapeutic option for attenuating the neuropathological changes associated with neurodegeneration, including Alzheimer’s disease (AD). The administration of trehalose in human and murine models was linked to restoring antioxidant status, decreasing lipoperoxidation, and alleviating neuroinflammation. This latter biochemical mechanism was associated with the upregulation of specific brain-enriched microRNAs (miRNA). Herein, using a direct hybridization approach, we evaluate trehalose intravenous treatment in AD patients, conducting a phase two clinical trial (IRCT20130829014521N15) examining the alteration of microRNA profiles before and after the treatment. Twenty patients were recruited and randomly assigned to two groups: the intervention group received 15 g/week of intravenous trehalose. The control group received placebo in the form of normal saline. The period chosen was 12 weeks. Blood samples were obtained at the beginning and end of the study. Circulating microRNAs expression data between the placebo and treatment groups were assessed using microarray analysis. Subsequently, differentially expressed (DE) miRNAs specific to the trehalose-treated group were identified, and their gene targets were determined by bioinformatics-based approaches. The analysis of DE miRNAs pointed out modulation in unique miRNAs between treatment and placebo groups. Specifically, hsa-miR-1268a, −3605-3p, −555, and −6511a-3p were significantly downregulated, while hsa-miR-324-3p and −539-5p showed significant upregulation. Of the 147 overlapped validated genes identified in the bioinformatics analysis, several are related to autophagy, protein aggregation, oxidative stress, and inflammation. KEGG enrichment pathways reveal regulation of actin cytoskeleton, axon guidance, and neurotrophin signaling pathways. The results identify significant modulation in unique miRNAs in AD patients under trehalose. These findings suggest the potential utility of these microRNAs as biomarkers for trehalose pharmacological monitoring in AD.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.