Ahsas Goyal , Muhammad Afzal , Nawaid Hussain Khan , Kavita Goyal , Suresh Kumar Srinivasamurthy , Gaurav Gupta , K. Benod Kumar , Haider Ali , Mohit Rana , Ling Shing Wong , Vinoth Kumarasamy , Vetriselvan Subramaniyan
{"title":"Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential","authors":"Ahsas Goyal , Muhammad Afzal , Nawaid Hussain Khan , Kavita Goyal , Suresh Kumar Srinivasamurthy , Gaurav Gupta , K. Benod Kumar , Haider Ali , Mohit Rana , Ling Shing Wong , Vinoth Kumarasamy , Vetriselvan Subramaniyan","doi":"10.1016/j.reth.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53–p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53–p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"29 ","pages":"Pages 352-363"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000616","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53–p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53–p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.