Nataliya Elenskaya , Mikhail Tashkinov , Vadim V. Silberschmidt
{"title":"TPMS-based scaffolds: Adaptation of morphological properties and mechanical response to reference tissue","authors":"Nataliya Elenskaya , Mikhail Tashkinov , Vadim V. Silberschmidt","doi":"10.1016/j.ijsolstr.2025.113366","DOIUrl":null,"url":null,"abstract":"<div><div>Tissue engineering of bones is based on repair and replacement of their damaged parts with artificial scaffolds that have similar morphometric, mechanical, and biological properties. This study proposes a new approach to tailor the geometry and mechanical response of a scaffold to those of the micro-CT model of a reference bone tissue using target’s morphometric parameters such as mean trabecular thickness and porosity. A design approach for scaffolds is based on triply periodic minimal surfaces (TPMS), adapted by adjusting their surface parameters, number and orientation of unit cells. A match of stresses distributions in a scaffold with that of the reference model under the same loading conditions was used for comparison of their mechanical responses. The effect of the TPMS-based unit-cell type on the morphometric properties of the structure is studied, and the mechanical behaviour of the structures under uniaxial compression and shear loading is numerically simulated. The results indicate that the spatial orientation of the unit cell significantly affects the mechanical response and stress intensity under different mechanical loads. Several TPMS structures were identified with a good agreement with the reference model in terms of mechanical response for the controlled morphometric parameters of porosity and mean wall thickness.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"315 ","pages":"Article 113366"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325001520","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue engineering of bones is based on repair and replacement of their damaged parts with artificial scaffolds that have similar morphometric, mechanical, and biological properties. This study proposes a new approach to tailor the geometry and mechanical response of a scaffold to those of the micro-CT model of a reference bone tissue using target’s morphometric parameters such as mean trabecular thickness and porosity. A design approach for scaffolds is based on triply periodic minimal surfaces (TPMS), adapted by adjusting their surface parameters, number and orientation of unit cells. A match of stresses distributions in a scaffold with that of the reference model under the same loading conditions was used for comparison of their mechanical responses. The effect of the TPMS-based unit-cell type on the morphometric properties of the structure is studied, and the mechanical behaviour of the structures under uniaxial compression and shear loading is numerically simulated. The results indicate that the spatial orientation of the unit cell significantly affects the mechanical response and stress intensity under different mechanical loads. Several TPMS structures were identified with a good agreement with the reference model in terms of mechanical response for the controlled morphometric parameters of porosity and mean wall thickness.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.