{"title":"Smart bactericidal textile enabling in-situ visual assessment of antimicrobial activity","authors":"Amparo Ferrer-Vilanova , Josune Jimenez Ezenarro , Kristina Ivanova , Óscar Calvo , Ilana Perelshtein , Giulio Gorni , Ana Cristina Reguera , Rosalía Rodríguez-Rodríguez , Maria Blanes , Núria Vigués , Jordi Mas , Aharon Gedanken , Tzanko Tzanov , Gonzalo Guirado , Xavier Muñoz-Berbel","doi":"10.1016/j.mtbio.2025.101724","DOIUrl":null,"url":null,"abstract":"<div><div>Hospital fabrics and wound dressings with antibacterial properties are essential to minimize infection risks associated with bacterial colonization of textiles. A key challenge of these materials lies in the difficulty in assessing their functional lifespan. Integrating bacterial-sensing elements into smart textiles enables real-time and in-situ evaluation of antibacterial activity. However, this approach is often hindered by the reactivity between bactericidal and bacterial-sensing components, the limited stability and selectivity of the sensing probes, and high production costs. Here, we address these challenges by presenting a smart textile that simultaneously provides antibacterial activity and bacterial-sensing capacity using a layer-by-layer sonochemical deposition method. Prussian blue, a chromogenic bacterial-sensing probe, is integrated onto hospital-grade antibacterial fabrics containing copper oxide nanoparticles. When the biocidal fabric begins to lose its antimicrobial activity, live bacteria in the textile metabolically reduce Prussian blue nanoparticles, triggering a visible colour change. This approach offers several key advantages, such as: (i) the resulting textile retains antibacterial activity comparable to conventional copper oxide-based textiles (A value > 4 in both cases); (ii) it provides a direct and visible colour transition from blue to colourless (>20 % colour losses) when the antibacterial coating begins to lose effectiveness, enabling straightforward monitoring of antibacterial lifespan without external instruments or reagents; (iii) the co-immobilization enhances coating stability, nearly doubling the binding strength of copper oxide and Prussian blue compared to single-layer coatings; and (iv), the additional Prussian blue layer significantly reduces the material cytotoxicity, enhancing biocompatibility for safer use in healthcare settings. These innovations offer a scalable, cost-effective, and multifunctional solution for infection control. The smart textile not only prevents bacterial spread but also provides timely, visual indications of coating degradation, making it a promising tool for improving patient safety in hospitals and for minimizing infection risks in schools and other high-risk environments.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101724"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002832","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hospital fabrics and wound dressings with antibacterial properties are essential to minimize infection risks associated with bacterial colonization of textiles. A key challenge of these materials lies in the difficulty in assessing their functional lifespan. Integrating bacterial-sensing elements into smart textiles enables real-time and in-situ evaluation of antibacterial activity. However, this approach is often hindered by the reactivity between bactericidal and bacterial-sensing components, the limited stability and selectivity of the sensing probes, and high production costs. Here, we address these challenges by presenting a smart textile that simultaneously provides antibacterial activity and bacterial-sensing capacity using a layer-by-layer sonochemical deposition method. Prussian blue, a chromogenic bacterial-sensing probe, is integrated onto hospital-grade antibacterial fabrics containing copper oxide nanoparticles. When the biocidal fabric begins to lose its antimicrobial activity, live bacteria in the textile metabolically reduce Prussian blue nanoparticles, triggering a visible colour change. This approach offers several key advantages, such as: (i) the resulting textile retains antibacterial activity comparable to conventional copper oxide-based textiles (A value > 4 in both cases); (ii) it provides a direct and visible colour transition from blue to colourless (>20 % colour losses) when the antibacterial coating begins to lose effectiveness, enabling straightforward monitoring of antibacterial lifespan without external instruments or reagents; (iii) the co-immobilization enhances coating stability, nearly doubling the binding strength of copper oxide and Prussian blue compared to single-layer coatings; and (iv), the additional Prussian blue layer significantly reduces the material cytotoxicity, enhancing biocompatibility for safer use in healthcare settings. These innovations offer a scalable, cost-effective, and multifunctional solution for infection control. The smart textile not only prevents bacterial spread but also provides timely, visual indications of coating degradation, making it a promising tool for improving patient safety in hospitals and for minimizing infection risks in schools and other high-risk environments.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).