Mingzhi Li , Li Pan , Caoyuan Ma , Hongxia Wu , Guangtao Xiang , Lian-Feng Li , Tao Wang , Rui Luo , Yongfeng Li , Di Liu , Huanjie Zhai , Moon Assad , Xin Song , Yanjin Wang , Franck Gallardo , Hua-Ji Qiu , Yuan Sun
{"title":"Tracking of single virus: Dual fluorescent labeling of pseudorabies virus for observing entry and replication in the N2a cells","authors":"Mingzhi Li , Li Pan , Caoyuan Ma , Hongxia Wu , Guangtao Xiang , Lian-Feng Li , Tao Wang , Rui Luo , Yongfeng Li , Di Liu , Huanjie Zhai , Moon Assad , Xin Song , Yanjin Wang , Franck Gallardo , Hua-Ji Qiu , Yuan Sun","doi":"10.1016/j.vetmic.2025.110503","DOIUrl":null,"url":null,"abstract":"<div><div>Pseudorabies virus (PRV) is a neurotropic herpesvirus. It is not easy to be track the whole replication progress of PRV, especially the nascent viral genome in the host cells. In this study, we developed a dual-fluorescence-labeled PRV (rPRV-Anchor3-mCherry) with the viral genome and the envelope protein gM labeled by ANCHOR DNA labeling system and mCherry, respectively. Through single-virus tracking of rPRV-Anchor3-mCherry, we observed that PRV invaded mouse neuroblastoma Neuro-2a cells via both endocytosis and plasma membrane fusion pathway. During the replication stage, parental and progeny viral genome of rPRV-Anchor3-mCherry in the cell nuclei could be visible, and viral nucleocapsid appeared more specifically than traditional capsid protein labeled PRV particles (rPRV-VP26-EGFP). We found that numerous progeny viral particles were produced in the nuclear, causing the nucleus membrane to break using three-dimensional (3D) live-cell imaging and electron microscopy. Moreover, our findings confirmed that simultaneously targeting of the <em>UL9</em> and <em>UL54</em> genes using a CRISPR-Cas9 system led to the complete inhibition PRV replication. rPRV-Anchor3-mCherry can be used to research multiple steps of the viral cycle.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"304 ","pages":"Article 110503"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525001385","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudorabies virus (PRV) is a neurotropic herpesvirus. It is not easy to be track the whole replication progress of PRV, especially the nascent viral genome in the host cells. In this study, we developed a dual-fluorescence-labeled PRV (rPRV-Anchor3-mCherry) with the viral genome and the envelope protein gM labeled by ANCHOR DNA labeling system and mCherry, respectively. Through single-virus tracking of rPRV-Anchor3-mCherry, we observed that PRV invaded mouse neuroblastoma Neuro-2a cells via both endocytosis and plasma membrane fusion pathway. During the replication stage, parental and progeny viral genome of rPRV-Anchor3-mCherry in the cell nuclei could be visible, and viral nucleocapsid appeared more specifically than traditional capsid protein labeled PRV particles (rPRV-VP26-EGFP). We found that numerous progeny viral particles were produced in the nuclear, causing the nucleus membrane to break using three-dimensional (3D) live-cell imaging and electron microscopy. Moreover, our findings confirmed that simultaneously targeting of the UL9 and UL54 genes using a CRISPR-Cas9 system led to the complete inhibition PRV replication. rPRV-Anchor3-mCherry can be used to research multiple steps of the viral cycle.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.