Sp4/HD11 and Sp1/HAT-p300 complexes induce apoptotic cell death in CuCl2-treated neurons by modulating histone acetylation on BCL-W and BAX promoters

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Silvia Ruggiero , Natascia Guida , Luigi Mascolo , Angelo Serani , Anna Ferrante , Francesca Galasso , Luca Sanguigno , Erica Piemonte , Elvira De Rosa , Paolo Montuori , Maria Triassi , Gianfranco Di Renzo , Mario Galgani , Luigi Formisano
{"title":"Sp4/HD11 and Sp1/HAT-p300 complexes induce apoptotic cell death in CuCl2-treated neurons by modulating histone acetylation on BCL-W and BAX promoters","authors":"Silvia Ruggiero ,&nbsp;Natascia Guida ,&nbsp;Luigi Mascolo ,&nbsp;Angelo Serani ,&nbsp;Anna Ferrante ,&nbsp;Francesca Galasso ,&nbsp;Luca Sanguigno ,&nbsp;Erica Piemonte ,&nbsp;Elvira De Rosa ,&nbsp;Paolo Montuori ,&nbsp;Maria Triassi ,&nbsp;Gianfranco Di Renzo ,&nbsp;Mario Galgani ,&nbsp;Luigi Formisano","doi":"10.1016/j.neuint.2025.105973","DOIUrl":null,"url":null,"abstract":"<div><div>Copper is a metal physiologically present in the brain that becomes neurotoxic at high concentrations; on the other hand, pharmacological inhibition of Histone Deacetylases (HDs) or of Histone Acetyltransferases (HATs) reduce neuronal death caused by several neurotoxicants. Herein, we found that CuCl<sub>2</sub> (300 μM in SH-SY5Y cells or 100 μM in cortical neurons) determined apoptotic cell death, that was counteracted by the class IV HDs inhibitor Mocetinostat (MOCE) and by the HAT-p300 inhibitor C646, but not by the class I and II HDs inhibitors. Interestingly, HD11 and HAT-p300 protein levels increased after both 12 and 24 h of CuCl<sub>2</sub> exposure and their silencing partially limited CuCl<sub>2</sub>-neurodetrimental effect. Furthermore, in CuCl<sub>2</sub>-treated cells the transcriptional factor Sp4 co-localized with HD11 on the promoter of anti-apoptotic gene BCL-W, determining histone H3 hypo-acetylation, a marker of gene repression. Contrarily, Sp1 co-localized with HAT-p300 on the pro-apoptotic gene BAX, determining histone H4 hyper-acetylation, a hallmark of transcriptional activation. In addition, siRNA against Sp4 prevented HD11 binding on BCL-W promoter and its consequent down-regulation, whereas Sp1 knocking-down, by reducing HAT-p300 interaction on BAX gene promoter counteracted its up-regulation. Importantly, while the single knocking-down of Sp1, Sp4, HD11 and HAT-p300 partially mitigated CuCl<sub>2</sub>-induced cell death, the double-transfection of siRNAs for Sp1 and Sp4, or for HD11 and HAT-p300, completely reverted the neurotoxic effect of CuCl<sub>2</sub>. Collectively, we found that CuCl<sub>2</sub>-induced neuronal apoptosis is determined by the binding of Sp1/HAT-p300 and of Sp4/HD11 transcriptional complexes on the BAX and BCL-W gene, respectively, unraveling a new pathway involved in Copper-induced neurotoxicity.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"186 ","pages":"Article 105973"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000464","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper is a metal physiologically present in the brain that becomes neurotoxic at high concentrations; on the other hand, pharmacological inhibition of Histone Deacetylases (HDs) or of Histone Acetyltransferases (HATs) reduce neuronal death caused by several neurotoxicants. Herein, we found that CuCl2 (300 μM in SH-SY5Y cells or 100 μM in cortical neurons) determined apoptotic cell death, that was counteracted by the class IV HDs inhibitor Mocetinostat (MOCE) and by the HAT-p300 inhibitor C646, but not by the class I and II HDs inhibitors. Interestingly, HD11 and HAT-p300 protein levels increased after both 12 and 24 h of CuCl2 exposure and their silencing partially limited CuCl2-neurodetrimental effect. Furthermore, in CuCl2-treated cells the transcriptional factor Sp4 co-localized with HD11 on the promoter of anti-apoptotic gene BCL-W, determining histone H3 hypo-acetylation, a marker of gene repression. Contrarily, Sp1 co-localized with HAT-p300 on the pro-apoptotic gene BAX, determining histone H4 hyper-acetylation, a hallmark of transcriptional activation. In addition, siRNA against Sp4 prevented HD11 binding on BCL-W promoter and its consequent down-regulation, whereas Sp1 knocking-down, by reducing HAT-p300 interaction on BAX gene promoter counteracted its up-regulation. Importantly, while the single knocking-down of Sp1, Sp4, HD11 and HAT-p300 partially mitigated CuCl2-induced cell death, the double-transfection of siRNAs for Sp1 and Sp4, or for HD11 and HAT-p300, completely reverted the neurotoxic effect of CuCl2. Collectively, we found that CuCl2-induced neuronal apoptosis is determined by the binding of Sp1/HAT-p300 and of Sp4/HD11 transcriptional complexes on the BAX and BCL-W gene, respectively, unraveling a new pathway involved in Copper-induced neurotoxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信