{"title":"Copper phosphide quantum dot: A bifunctional catalyst for electro- and photochemical transformation of biomass-derived 5-hydroxymethylfurfural","authors":"Tarisha Gupta , R. Bhavana , Souradip Ganguly , Sirshendu Ghosh , Biswajit Mondal","doi":"10.1016/j.cattod.2025.115302","DOIUrl":null,"url":null,"abstract":"<div><div>The extensive reliance on fossil fuel enables the harnessing of biomass-derived compounds, such as 5-Hydroxymethylfurfural (HMF), for the sustainable production of valuable products. Copper-based materials are gaining interest as heterogeneous electrocatalysts due to their abundance and tuneable redox states. Herein, we report copper phosphide (Cu<sub>3</sub>P) quantum dot as a bifunctional electrocatalyst for oxidation and reduction of HMF into 2,5-Furandicarboxylic acid and 2,5-bis(hydroxymethyl)furan, respectively, which serve as the platform chemicals. We have achieved faradaic efficiency of 57 % in 1 M KOH and 45 % in pH 4 PBS at 10 and −2 mA cm<sup>−2</sup> current density for HMFOR and HMFRR, respectively. This work presents the scope of replacing anodic and cathodic reactions of conventional water electrolysis with less energy cost, easy catalyst synthesis, and ambient conditions.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"455 ","pages":"Article 115302"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001208","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive reliance on fossil fuel enables the harnessing of biomass-derived compounds, such as 5-Hydroxymethylfurfural (HMF), for the sustainable production of valuable products. Copper-based materials are gaining interest as heterogeneous electrocatalysts due to their abundance and tuneable redox states. Herein, we report copper phosphide (Cu3P) quantum dot as a bifunctional electrocatalyst for oxidation and reduction of HMF into 2,5-Furandicarboxylic acid and 2,5-bis(hydroxymethyl)furan, respectively, which serve as the platform chemicals. We have achieved faradaic efficiency of 57 % in 1 M KOH and 45 % in pH 4 PBS at 10 and −2 mA cm−2 current density for HMFOR and HMFRR, respectively. This work presents the scope of replacing anodic and cathodic reactions of conventional water electrolysis with less energy cost, easy catalyst synthesis, and ambient conditions.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.