Yubo Sun , Yaxin Tao , Zhenming Li , Wenjun Lu , Zhiyuan Liu , Shengtian Zhai , Jian Zhang
{"title":"Accelerated carbonation of MSWI fly ash as a supplementary precursor in alkali-activated materials","authors":"Yubo Sun , Yaxin Tao , Zhenming Li , Wenjun Lu , Zhiyuan Liu , Shengtian Zhai , Jian Zhang","doi":"10.1016/j.dibe.2025.100651","DOIUrl":null,"url":null,"abstract":"<div><div>The supply of blast furnace slag (BFS) for alkali-activated materials (AAMs) has declined due to increased scrap recycling and BFS usage in cement industry. Sustainable supplementary precursors are urgently needed to ensure the progress of AAMs. This study treated municipal solid waste incineration (MSWI) fly ash (MFA) with accelerated carbonation (AC) to convert the waste material into suitable precursors. MFA exhibited strong CO<sub>2</sub> capture due to the presence of slaked lime, with calcite content rising by 67 % after 6-h of AC. Heavy metal leaching was significantly reduced, with Cu and Pb leachate decreasing by 53.1 % and 73.5 %, respectively. AAM mixtures with 0–50 wt% carbonated MFA (CMFA) were tested. While CMFA slowed early structuration and altered fresh mixture properties, 10 wt% CMFA achieved comparable 28-day strength to the reference, and heavy metal leachate from hardened mortars met environmental standards. Results have confirmed CMFA is a viable supplementary precursor for AAMs.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"22 ","pages":"Article 100651"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The supply of blast furnace slag (BFS) for alkali-activated materials (AAMs) has declined due to increased scrap recycling and BFS usage in cement industry. Sustainable supplementary precursors are urgently needed to ensure the progress of AAMs. This study treated municipal solid waste incineration (MSWI) fly ash (MFA) with accelerated carbonation (AC) to convert the waste material into suitable precursors. MFA exhibited strong CO2 capture due to the presence of slaked lime, with calcite content rising by 67 % after 6-h of AC. Heavy metal leaching was significantly reduced, with Cu and Pb leachate decreasing by 53.1 % and 73.5 %, respectively. AAM mixtures with 0–50 wt% carbonated MFA (CMFA) were tested. While CMFA slowed early structuration and altered fresh mixture properties, 10 wt% CMFA achieved comparable 28-day strength to the reference, and heavy metal leachate from hardened mortars met environmental standards. Results have confirmed CMFA is a viable supplementary precursor for AAMs.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.