Automatic method to predict visual pleasantness and unpleasantness of streetscapes and identify key microscale components for improving pedestrian environments
IF 6.2 2区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Automatic method to predict visual pleasantness and unpleasantness of streetscapes and identify key microscale components for improving pedestrian environments","authors":"Meesung Lee , Byungjoo Choi , Sungjoo Hwang","doi":"10.1016/j.dibe.2025.100652","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advances in computer vision-based streetscape evaluation, studies often overlook the influence of diverse microscale components and attributes like materials and combinations. This paper presents an automatic method to predict the visual quality of streetscape images from a pedestrian perspective, focusing on pleasantness and unpleasantness. Key components and combinations affecting this quality are identified. A dataset of 5000 streetscape images was developed, each labeled with 50 survey responses and component data. The image-based model outperformed previous approaches using both image and non-image inputs. The components contributing to pleasantness–unpleasantness were identified through Shapley-Additive-exPlanation analysis. Results showed that green space, traffic elements, pedestrian amenities, and street materials impact visual quality with varying combination effects. This study advances urban evaluation by developing an automatic method to predict streetscape quality and analyze microscale components. The findings contribute to practical urban improvements and facilitate more informed, effective decision-making in planning, design, and stakeholder engagement.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"22 ","pages":"Article 100652"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000523","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in computer vision-based streetscape evaluation, studies often overlook the influence of diverse microscale components and attributes like materials and combinations. This paper presents an automatic method to predict the visual quality of streetscape images from a pedestrian perspective, focusing on pleasantness and unpleasantness. Key components and combinations affecting this quality are identified. A dataset of 5000 streetscape images was developed, each labeled with 50 survey responses and component data. The image-based model outperformed previous approaches using both image and non-image inputs. The components contributing to pleasantness–unpleasantness were identified through Shapley-Additive-exPlanation analysis. Results showed that green space, traffic elements, pedestrian amenities, and street materials impact visual quality with varying combination effects. This study advances urban evaluation by developing an automatic method to predict streetscape quality and analyze microscale components. The findings contribute to practical urban improvements and facilitate more informed, effective decision-making in planning, design, and stakeholder engagement.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.