Optimization of photosensitive polymers doped with C60 nanoparticles for high-density polarization holographic storage

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yourong Liu , Jihong Zheng , Ke Li , Siyu Lu , Xiao Lin , Xiaodi Tan
{"title":"Optimization of photosensitive polymers doped with C60 nanoparticles for high-density polarization holographic storage","authors":"Yourong Liu ,&nbsp;Jihong Zheng ,&nbsp;Ke Li ,&nbsp;Siyu Lu ,&nbsp;Xiao Lin ,&nbsp;Xiaodi Tan","doi":"10.1016/j.optmat.2025.117004","DOIUrl":null,"url":null,"abstract":"<div><div>Holographic media with high diffraction efficiency are crucial for advancing high-density polarization holographic storage technologies. In this study, we enhanced the holographic performance of the material by exploiting the interaction between C<sub>60</sub> and the photoinitiator, and adjusting the cross-linking density between low-refractive-index monomer and high-refractive-index epoxy resin. The results show that increasing the number of functional groups of the monomer can accelerate the polymerization reaction. Furthermore, when synergistically combined with C<sub>60</sub> nanoparticles, this increases the diffraction efficiency of the photopolymer to 81.5% and optimizes its polarization holographic response (9.4 %), achieving high photosensitivity and low volume shrinkage (0.0795 %). In large-angle polarization holography, the orthogonal polarization diffraction efficiency of the photopolymer exhibits a strong correlation with C<sub>60</sub> nanoparticle doping concentration. The π-π non-covalent interaction between C<sub>60</sub> nanoparticles attracts photosensitizers, accelerating the decomposition of the photosensitizer and enhancing the monomer's double-bond conversion. The synthesized photopolymer can achieve high-density storage with a low bit error rate (0.8 %). Aging experiments indicate that this material can remain stable for a long time. This study provides a feasible approach for the development of high-performance nanocomposite photopolymers and materials sensitive to polarization holography.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"163 ","pages":"Article 117004"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346725003647","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Holographic media with high diffraction efficiency are crucial for advancing high-density polarization holographic storage technologies. In this study, we enhanced the holographic performance of the material by exploiting the interaction between C60 and the photoinitiator, and adjusting the cross-linking density between low-refractive-index monomer and high-refractive-index epoxy resin. The results show that increasing the number of functional groups of the monomer can accelerate the polymerization reaction. Furthermore, when synergistically combined with C60 nanoparticles, this increases the diffraction efficiency of the photopolymer to 81.5% and optimizes its polarization holographic response (9.4 %), achieving high photosensitivity and low volume shrinkage (0.0795 %). In large-angle polarization holography, the orthogonal polarization diffraction efficiency of the photopolymer exhibits a strong correlation with C60 nanoparticle doping concentration. The π-π non-covalent interaction between C60 nanoparticles attracts photosensitizers, accelerating the decomposition of the photosensitizer and enhancing the monomer's double-bond conversion. The synthesized photopolymer can achieve high-density storage with a low bit error rate (0.8 %). Aging experiments indicate that this material can remain stable for a long time. This study provides a feasible approach for the development of high-performance nanocomposite photopolymers and materials sensitive to polarization holography.

Abstract Image

掺杂C60纳米颗粒光敏聚合物的高密度偏振全息存储优化
高衍射效率的全息介质是推进高密度偏振全息存储技术的关键。在本研究中,我们通过利用C60与光引发剂的相互作用,以及调节低折射率单体与高折射率环氧树脂之间的交联密度来增强材料的全息性能。结果表明,增加单体官能团的数量可以加速聚合反应。此外,当与C60纳米粒子协同作用时,光聚合物的衍射效率提高到81.5%,偏振全息响应优化到9.4%,实现了高光敏性和低体积收缩率(0.0795%)。在大角度偏振全息中,光聚合物的正交偏振衍射效率与C60纳米颗粒掺杂浓度有很强的相关性。C60纳米颗粒之间的π-π非共价相互作用吸引光敏剂,加速光敏剂的分解,增强单体的双键转化。所合成的光聚合物可以实现高密度存储,误码率低(0.8%)。老化实验表明,该材料能长时间保持稳定。本研究为开发高性能的纳米复合光聚合物和偏振全息敏感材料提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信