Jianyu Wang , Tonglin Wang , Lei Zhu , Junshu Wang , Qiaohui Gao , Li Guo , Ganggang Lv , Wenle Zhang , Zefang Zhang , Changbin Yang , Lin Yao , Junye Liu , Fei Da
{"title":"The emerging role of IL-22 as a potential radiosensitivity biomarker for radiation-induced intestinal injury","authors":"Jianyu Wang , Tonglin Wang , Lei Zhu , Junshu Wang , Qiaohui Gao , Li Guo , Ganggang Lv , Wenle Zhang , Zefang Zhang , Changbin Yang , Lin Yao , Junye Liu , Fei Da","doi":"10.1016/j.intimp.2025.114573","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the beneficial role played by IL-22 in alleviating radiation-induced intestinal injury through its promotion of epithelial regeneration, it was hypothesized that individuals with elevated IL-22 levels might display either minimal intestinal injury or increased resistance following ionizing irradiation exposure. To assess the impact of IL-22 on intestinal radiosensitivity, IL-22 expression levels was detected in serum of normal mice. Mice naturally with high or low levels of IL-22 or pretreated with IL-22 or anti-IL-22 were subjected to 10 Gy of total abdominal radiation (TAI). Daily observation, morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry and western blot were employed to measure weight loss, survival rate, cell proliferation and death, and DNA damage. Furthermore, influence of IL-22 pretreatment on survival of intestinal organoid exposed to 6 Gy X-rays was evaluated. The results showed that IL-22 expression levels were varied between individuals. Surprisingly, mice with high IL-22 levels displayed exacerbated intestinal injury manifesting as increased weight loss, reduced regeneration capacity and more cell apoptosis. Notably, a strong positive correlation between weight loss and IL-22 expression level was observed. Additionally, pretreatment with IL-22 resulted in increased mortality accompanied by enhanced cell apoptosis and DNA damage in crypt of early exposure, as well as diminished survival of intestinal organoid, while pretreatment with anti-IL-22 antibody alleviated the intestinal injury. In this study, we established a direct link between IL-22 and radiosensitivity, suggesting IL-22 could be used as a potential biomarker for predicting individual intestinal radiosensitivity prior to radiation exposure.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"155 ","pages":"Article 114573"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925005636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the beneficial role played by IL-22 in alleviating radiation-induced intestinal injury through its promotion of epithelial regeneration, it was hypothesized that individuals with elevated IL-22 levels might display either minimal intestinal injury or increased resistance following ionizing irradiation exposure. To assess the impact of IL-22 on intestinal radiosensitivity, IL-22 expression levels was detected in serum of normal mice. Mice naturally with high or low levels of IL-22 or pretreated with IL-22 or anti-IL-22 were subjected to 10 Gy of total abdominal radiation (TAI). Daily observation, morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry and western blot were employed to measure weight loss, survival rate, cell proliferation and death, and DNA damage. Furthermore, influence of IL-22 pretreatment on survival of intestinal organoid exposed to 6 Gy X-rays was evaluated. The results showed that IL-22 expression levels were varied between individuals. Surprisingly, mice with high IL-22 levels displayed exacerbated intestinal injury manifesting as increased weight loss, reduced regeneration capacity and more cell apoptosis. Notably, a strong positive correlation between weight loss and IL-22 expression level was observed. Additionally, pretreatment with IL-22 resulted in increased mortality accompanied by enhanced cell apoptosis and DNA damage in crypt of early exposure, as well as diminished survival of intestinal organoid, while pretreatment with anti-IL-22 antibody alleviated the intestinal injury. In this study, we established a direct link between IL-22 and radiosensitivity, suggesting IL-22 could be used as a potential biomarker for predicting individual intestinal radiosensitivity prior to radiation exposure.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.