Glycine receptors: Structure, function, and therapeutic implications

IF 8.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicole Mizzi , Renald Blundell
{"title":"Glycine receptors: Structure, function, and therapeutic implications","authors":"Nicole Mizzi ,&nbsp;Renald Blundell","doi":"10.1016/j.mam.2025.101360","DOIUrl":null,"url":null,"abstract":"<div><div>Glycine receptors are considered as an integral part of higher brain function in mammals. The main function of glycine receptor is fast inhibitory transmission brought about by glycine neurotransmitter, its full agonist. This receptor is part of the glycinergic system which controls key physiological functions such as motor coordination, regulation of the rhythm of respiration and pain signalling. Glycine, a non-essential amino acid, causes hyperpolarisation within the glycine receptor, leading this ion channel to open and allow influx of chloride ion. The glycine receptor is found within the central nervous system and peripheral nervous system. It has also been found within amacrine cells, as well as renal medulla and cortex. The glycine receptor is a pentameric ligand-gated channel, part of the Cys-loop superfamily. It is composed of large ECD, C terminus, transmembrane domain M1-M4, and a 4α:1β glycine receptor subunit stoichiometry. The glycine receptor can be found as either homomeric or heteromeric subtypes. Alpha subtypes are crucial for important physiological functions such as breathing control and nociceptive system processing while the beta subunit aids in glycine receptor clustering and synapse stabilisation with its interaction with gephyrin scaffold protein. When hyperpolarised, the receptor transitions between close, open, and desensitised states. Factors that affect the activity and function of glycine receptors are gephyrin, ivermectin, strychnine and picrotoxin while certain endogenous modulators include partial agonists, positive allosteric modulator, antagonists, and bidirectional modulator are used for pharmacological modulation. Further studies need to be carried out on how glycine receptors are also implicated in chronic pain and nociception, epilepsy, autoimmune diseases and hyperekplexia.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"103 ","pages":"Article 101360"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Aspects of Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009829972500024X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycine receptors are considered as an integral part of higher brain function in mammals. The main function of glycine receptor is fast inhibitory transmission brought about by glycine neurotransmitter, its full agonist. This receptor is part of the glycinergic system which controls key physiological functions such as motor coordination, regulation of the rhythm of respiration and pain signalling. Glycine, a non-essential amino acid, causes hyperpolarisation within the glycine receptor, leading this ion channel to open and allow influx of chloride ion. The glycine receptor is found within the central nervous system and peripheral nervous system. It has also been found within amacrine cells, as well as renal medulla and cortex. The glycine receptor is a pentameric ligand-gated channel, part of the Cys-loop superfamily. It is composed of large ECD, C terminus, transmembrane domain M1-M4, and a 4α:1β glycine receptor subunit stoichiometry. The glycine receptor can be found as either homomeric or heteromeric subtypes. Alpha subtypes are crucial for important physiological functions such as breathing control and nociceptive system processing while the beta subunit aids in glycine receptor clustering and synapse stabilisation with its interaction with gephyrin scaffold protein. When hyperpolarised, the receptor transitions between close, open, and desensitised states. Factors that affect the activity and function of glycine receptors are gephyrin, ivermectin, strychnine and picrotoxin while certain endogenous modulators include partial agonists, positive allosteric modulator, antagonists, and bidirectional modulator are used for pharmacological modulation. Further studies need to be carried out on how glycine receptors are also implicated in chronic pain and nociception, epilepsy, autoimmune diseases and hyperekplexia.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Aspects of Medicine
Molecular Aspects of Medicine 医学-生化与分子生物学
CiteScore
18.20
自引率
0.00%
发文量
85
审稿时长
55 days
期刊介绍: Molecular Aspects of Medicine is a review journal that serves as an official publication of the International Union of Biochemistry and Molecular Biology. It caters to physicians and biomedical scientists and aims to bridge the gap between these two fields. The journal encourages practicing clinical scientists to contribute by providing extended reviews on the molecular aspects of a specific medical field. These articles are written in a way that appeals to both doctors who may struggle with basic science and basic scientists who may have limited awareness of clinical practice issues. The journal covers a wide range of medical topics to showcase the molecular insights gained from basic science and highlight the challenging problems that medicine presents to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信